FINAL

BASE BACKGROUND STUDY

MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROLINA

CONTRACT TASK ORDER 0371

April 25, 2001

Prepared for:

DEPARTMENT OF THE NAVY
ATLANTIC DIVISION
NAVAL FACILITIES
ENGINEERING COMMAND

Norfolk, Virginia

Under the:

LANTDIV CLEAN Program Contract N62470-89-D-4814

Prepared by:

BAKER ENVIRONMENTAL, INC.

Coraopolis, Pennsylvania

TABLE OF CONTENTS

			<u>Page</u>	
LIST	OF ACI	RONYMS AND ABBREVIATIONS	iii	
EXE	CUTIVE	SUMMARY	ES-1	
1.0	INTR	ODUCTION	1-1	
1.0	1.1	Base Background Study Objectives	1-2	
	1.2	Report Organization	1-2	
2.0	MCB, CAMP LEJEUNE SITE SETTING AND PHYSICAL			
		RACTERISTICS	2-1	
	2.1	MCB, Camp Lejeune	2-1	
	2.2	History and Mission of Camp Lejeune	2-3	
	2.3	Land Use and Demographics	2-4	
	2.4	Regulatory History	2-4	
3.0	ENVI	RONMENTAL SETTING	3-1	
	3.1	Climatology	5-1	
	3.2	Topography and Surface Features	<i>3</i> -1	
	3.3	Surface Soil Associations	3-2	
	3.4	Subsurface Geology	3-2	
	3.5	Hydrogeology	3-5	
	3.6	Water Supply	3-0	
	3.7	Surface Water Hydrology	3-8	
	3.8	Feological Characteristics		
	3.9	Wetlands	3-14	
	3.10	Threatened and Endangered Species	3-13	
4.0	BASE	BACKGROUND STUDY DESIGN	4-1	
	4.1	Background Investigation Design	4-1	
	4.2	Surface Soil Investigation	4-2	
	4.3	Subsurface Soil Investigation	4-3	
5.0	BASE	BACKGROUND FIELD INVESTIGATION	5-1	
	5.1	Pre-Sampling Activities	3-1	
	5.2	Soil Sample Collection	5-1	
	5.3	Sample Designation	5-2	
	5.4	Quality Assurance/Quality Control (QA/QC) Program	3-4	
	5.5	Decontamination Procedures	5-4	
	5.6	Analytical Program	3-3	
6.0	ANA	6-1		
	6.1	Data Quality	0-1	
	6.2	Data Management and Tracking	6-2	
	6.3	OA/OC Sample Results	6-3	
	6.4	Analytical Results	0-3	
	6.5	Statistical Evaluation of Background Data	0-4	
	6.6	Scatter Plots and Linear Regression Analysis		
7.0	CON	CLUSIONS AND RECOMMENDATIONS	7-1	
8.0	REFI	ERENCES	8-1	

TABLE OF CONTENTS

(Continued)

LIST OF TABLES

2-1	Land Utilization: Developed Areas of Land Use
3-1	Climatic Data Summary
3-2	Geologic and Hydrogeologic Units in the Coastal Plain of North Carolina
3-3	Hydraulic Property Estimates of the Castle Hayne Aquifer and Confining Unit
3-4	Protected Species within MCB, Camp Lejeune
6-1	Summary of Pository Detected Inorganics in Fire Sand Surface Soil
6-2	Summary of Pository Detected Inorganics in Loamy Surface Soil
6-3	Summary of Pository Detected Inorganics in Subsurface Sand
6-4	Summary of Pository Detected Inorganics in Subsurface Silt
6-5	Summary of Pository Detected Inorganics in Subsurface Soil
6-6	Statistics Summary for Inorganics in Fire Sand Surface Soil
6-7	Statistics Summary for Inorganics in Loamy Surface Soil
6-8	Statistics Summary for Inorganics in Subsurface Sand
6-9	Statistics Summary for Inorganics in Silt
6-10	Statistics Summary for Inorganics in Clay

LIST OF FIGURES

- 2-1 General Location Map, MCB, Camp3-1 Topographic Map of MCB, Camp Lejeune
- 3-2 General Soil Map of Onslow County
- 5-1 Base Background Soil Boring Location Map

Analytical Results for QA/QC samples

LIST OF APPENDICES

L

Soil Associations Α В **Test Boring Construction Records** C Technical Memorandum D Chain of Custody Records E Analytical Data and Statistics for fine Sand Surface Soils Analytical Data and Statistics for Loamy Surface Soils F Analytical Data and Statistics for Subsurface Sands G Η Analytical Data and Statistics for Silts Analytical Data and Statistics for Clays I Analytical Data and Statistics for Combined Surface Soils J Analytical Data and Statistics for Combined Subsurface Soils K

LIST OF ACRONYMS AND ABBREVIATIONS

AnB Alpin Soils

ASTM American Standard for Testing Materials

AuB Autryville Soils

BaB, BmB Baymeade Soils

Baker Environmental, Inc. bgs Below Ground Surface

Ca Carteret Soils

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CLEAN Comprehensive Long-Term Environmental Action Navy Program

Co Corolla Soils
Cr Craven Soils
CrB Croatan Soils

CRDL Contract Required Detection Limit
CRQL Contract Required Quantitation Limit

Da Dorovan Soils
De Duckston Soils

DEM Division of Environmental Management

DoN Department of the Navy

EMD Environmental Management Department

FFA Federal Facility Agreement

ft/d Feet Per Day

ft²/d Square Feet Per Day

FMFLANT Fleet Marine Force Atlantic

Fo Foreston Soils

FSSG Force Service Support Group

GoA Goldsboro Soils gpd Gallons Per Day gpm Gallons Per Minute

GPS Geographic Positioning System

GSRA Greater Sandy Run Area

Gt Grifton Soils

HPIA Hadnot Point Industrial Area

HSWA Hazardous and Solid Waste Amendments of 1984

HQW High Quality Waters

IAS Initial Assessment Study

IRP Installation Restoration Program

JPL Jacksonville Professional Locators

KuB Kureb Soils

LIST OF ACRONYMS AND ABBREVIATIONS

(Continued)

La Lafitle Soils

LANTDIV Atlantic Division, Naval Engineering Command

Le Lenoir Soils
Ln Leon Soils

LUST Leaking Underground Storage Tank

Ly Lynchburg Soils

mg/L Milligrams Per Liter

MaC Marvyn Soils

MAGTF Marine Air Ground Task Force
MCAS Marine Corps Air Station

MCB Marine Corps Base
MEK Methyl Ethyl Ketone
Mk Muckalee Soils
msl Mean Sea Level

MS/MSD Matrix Spike/Matrix Spike Duplicate

Mu Murville Soils

NC DENR North Carolina Department of Environment, and Natural Resources

NeE Newhan Soils

NFESC Naval Facility Engineering Service Center

NoA, NoB Norfolk Soils

NPL National Priorities List

NREA Natural Resources and Environmental Affairs

NSW Nutrient Sensitive Waters
NTR Navy Technical Representative
NWI National Wetland Inventory

OD Outside Diameter
On Onslow Soils

Pa Pactolus Soils

PAHs Polynuclear Aromatic Hydrocarbons

Pn Pantego Soils

QA/QC Quality Assurance/Quality Control

Ra Rains Soils

RAGS Risk Assessment Guidance for Superfund RCRA Resource Conservation and Recovery Act

RFA RCRA Facility Assessment
RFI RCRA Facility Investigation
RI Remedial Investigation

SA State of North Carolina Surface Water Classification - estuarine water suited

for commercial shell fishing and all other tidal saltwater uses

SC State of North Carolina Surface Water Classification - salt waters protected

for secondary recreation, fishing, aquatic life including propagation and

survival

LIST OF ACRONYMS AND ABBREVIATIONS

(Continued)

SCS Soil Conservation Service SOPs Standard Operating Procedures

SSP Sample Strategy Plan

St Stallings Soils

SWMU Solid Waste Management Unit

TAL Target Analyte List
To Torhunta Soils

TSD Treatment, Storage, and Disposal

U.S.C. United States Code

USEPA United States Environmental Protection Agency

USGS United States Geological Survey USMC United States Marine Corps

Wo Woodington Soils

YaA Yaupon Soils

EXECUTIVE SUMMARY

This document presents the results of the Base Background Study conducted under the direction of Marine Corps Base (MCB), Camp Lejeune, North Carolina and the Atlantic Division, Naval Facilities Engineering Command (LANTDIV). It has been prepared by Baker Environmental, Inc. (Baker) under Contract Task Order (CTO) 0371 of the Department of the Navy's (DoN's) Comprehensive Long-Term Environmental Action Navy (CLEAN) Program.

The background concentrations used for several years at MCB, Camp Lejeune were compiled using data collected from soil borings located upgradient of several Remedial Investigation (RI) sites. It was later discovered that some of the RI sites were contaminated with inorganic substances (i.e., metals). This discovery lead to the suspicion that background sample locations may also have been contaminated but to a lesser degree, therefore, possibly artificially inflating the average background concentration. Based on this suspicion, it was decided that a new base background study should be conducted at MCB, Camp Lejeune and the soil samples would be collected from various locations throughout the base not believed to have been impacted by base activities.

Naturally occurring constituents such as inorganics occur ubiquitously in soil; therefore, distinguishing background levels from site-related concentrations is difficult. Because many naturally occurring inorganic constituents also may be of anthropogenic origin, an appropriate number of background samples were obtained to distinguish naturally occurring concentrations.

Sample locations were located at Camp Lejeune by Baker personnel between June 19, 2000 and June 27, 2000. MCB, Camp Lejeune Range Control and EMD's Fish and Wildlife Division approved these locations. These organizations were consulted to ensure that sampling was not conducted in areas used as active ranges or within protected/endangered habitats. After selection of the sample locations, Jacksonville Professional Locators, Inc. (JPL) visited the locations and determined if each location was clear of all buried underground utilities. If clearance of a sample location was not possible or if the location was in the vicinity of known utilities, the location was offset and clearance was obtained for the offset location. The final location was mapped using a Trimble Pro XR Global Positioning System (GPS).

Surface and subsurface soil samples were collected from 50 soil borings in areas that had no known history of any activity that may artificially inflate inorganic concentrations in surface and subsurface soils. The locations selected for sampling were remote and required the use of a tripod mounted soil sampler operated by Parratt Wolff, Inc, of Hillsboro, North Carolina.

All soil samples retained for analysis were prepared and handled according to USEPA Region 1V Standard Operating Procedures (SOPS) as outlined in the Final SSP (Baker, 2000). The Base Background Study focused on collecting soil samples for inorganic compounds, and pH analysis. The samples were shipped in ice-filled coolers by overnight courier to CompuChem Environmental Laboratories of Cary, North Carolina for analysis. The soil samples were analyzed for Target Analyte List (TAL) inorganics (Method 601 OB/7471A) and pH (ASTM Standard D 4972-95A, US EPA Method 9045). Heartland Environmental Services, Inc, of St. Peters, Missouri, validated results of the inorganic analyses, however, pH results were not submitted for third party validation.

In general, inorganic constituents were detected at similar levels of concentration in the surface and subsurface samples collected as part of this investigation. There are differences between the datasets but these differences are primarily based upon the soil type in each soil horizon. As the soils are separated into datasets based on their soil type, it becomes apparent that the majority of the constituents are more prevalent in the fine-grained soils (clay and silts) than in coarse-grained soils (sands). This was an expected finding since metals are known to attenuate onto clays through the formation of ionic bonds.

The concentrations of aluminum, calcium, magnesium, and iron exceed those for all other constituents analyzed during this investigation. This is not surprising because relatively high concentrations of these analytes have often been detected during previous investigations conducted at the Base. The relatively few detections of cadmium, silver, and thallium indicates that these analytes should be carefully evaluated as to their origin in any investigation. These analytes may be anthropogenic in origin, but do not appear to be common constituents in base soils.

1.0 INTRODUCTION

This document presents the results of the Base Background Study conducted under the direction of Marine Corps Base (MCB), Camp Lejeune, North Carolina and the Atlantic Division, Naval Facilities Engineering Command (LANTDIV). It has been prepared by Baker Environmental, Inc. (Baker) under Contract Task Order (CTO) 0371 of the Department of the Navy's (DoN's) Comprehensive Long-Term Environmental Action Navy (CLEAN) Program.

The background concentrations used for comparison to environmental media sampling results at Installation Restoration Program (IRP) sites at MCB, Camp Lejeune were compiled using data collected from soil borings located upgradient of several Remedial Investigation (RI) sites. It was later discovered that some of the sites were contaminated with inorganics (i.e., metals). This discovery lead to the suspicion that background sample locations may also have been contaminated, but to a lesser degree and therefore, possibly artificially inflating the average background concentration. Based on this suspicion, it was decided that a new Base background study should be conducted at MCB, Camp Lejeune by collecting soil samples from various locations throughout the Base not believed to be impacted by past or present activities.

The field activities conducted as part of this investigation were performed in accordance with the Sample Strategy Plan (SSP) prepared by Baker for this investigation (Baker, 2000) and the Solid Waste Management Unit (SWMU) Confirmatory Sampling Project Plans (Baker, 1997). The samples collected as part of this study are intended to provide the basis for a compilation of data representative of the natural concentration of metals in soils within the boundaries of MCB, Camp Lejeune. The SSP detailed the number and types of samples collected, the analytical methods to be used for those samples, specific sample locations, and the rationale for selecting locations and analyses. Detailed descriptions of the field procedures, sample analysis, and any deviations from planned procedures are outlined in Section 5.0 of this report.

1.1 Base Background Study Objectives

The objectives of the Base Background Study are summarized as follows:

- Determine background levels of inorganic analytes in surface and subsurface soil at MCB, Camp Lejeune;
- Establish statistical distribution of data and identify spatial trends;
- Compare inorganic levels within and between soil associations; and
- Produce a document summarizing the above information to be referenced for future investigations.

The background levels of inorganics in soil presented herein will establish a frame of reference or baseline of data to which inorganics at specific sites may be compared. The need to establish background levels of inorganics in soil is driven by the ubiquitous presence of inorganics in nature. As these analytes occur naturally in soil, it is necessary (during subsequent investigations) to determine if the presence of inorganics at a site are due to site activities (i.e., disposal, spills, etc.) or to natural occurrences. This determination can be made by comparing concentrations of inorganics detected in site soils to Base background levels.

1.2 Report Organization

This report is comprised of text, tables and figures, and the supporting appendices. In addition to Section 1.0, the report is organized into the following sections:

- Section 2.0 MCB, Camp Lejeune site setting and physical characteristics
- Section 3.0 Environmental Setting
- Section 4.0 Base Background Study Design
- Section 5.0 Base Background Field Investigation
- Section 6.0 Analytical Results and Statistical Evaluation
- Section 7.0 Conclusions and Recommendations
- Section 8.0 References

- Appendix A Soil Associations
- Appendix B Test Boring Construction Records
- Appendix C Groundwater Technical Memorandum
- Appendix D Chain of Custody Records
- Appendix E Analytical Data and Statistics for Fine Sand Surface Soils
- Appendix F Analytical Data and Statistics for Loamy Surface Soils
- Appendix G Analytical Data and Statistics for Subsurface Sands
- Appendix H Analytical Data and Statistics for Silts
- Appendix I Analytical Data and Statistics for Clays
- Appendix J Analytical Data and Statistics for Combined Surface Soils
- Appendix K Analytical Data and Statistics for Combined Subsurface Soils
- Appendix L Analytical Results for QA/QC Samples

2.0 MCB, CAMP LEJEUNE SITE SETTING AND PHYSICAL CHARACTERISTICS

This section presents the history and physical characteristics of MCB, Camp Lejeune. The discussion details the setting, history, and mission of MCB, Camp Lejeune. Information presented in this section was obtained from the available literature.

2.1 MCB, Camp Lejeune

MCB, Camp Lejeune is located within the Coastal Plain Physiographic Province. It is located in Onslow County, North Carolina, approximately 45 miles south of New Bern and 47 miles north of Wilmington. The facility covers approximately 236 square miles. This includes the acquisition of approximately 64 square miles west of the facility within the Greater Sandy Run Area (GSRA) of the county. The military reservation is bisected by the New River, which flows in a southeasterly direction and forms a large estuary before entering the Atlantic Ocean.

The eastern border of MCB, Camp Lejeune is the Atlantic shoreline. The western and northwestern boundaries are U.S. Route 17 and State Route 24, respectively. The City of Jacksonville, North Carolina, borders MCB, Camp Lejeune to the north. The location and boundaries of MCB, Camp Lejeune is depicted in Figure 2-1.

The GSRA is located in the southeast portion of Onslow County, North Carolina, near the Pender-Onslow County border. The GSRA is approximately 31 miles northeast of Wilmington, North Carolina; 15 miles south of Jacksonville, North Carolina; and 5 miles northwest of the Atlantic Ocean. The GSRA is located south and west of MCB, Camp Lejeune, sharing a common boundary along Route 17 between the towns of Dixon and Verona, North Carolina.

The following overview of the Base was taken from the document entitled "Master Plan, Camp Lejeune Complex, North Carolina." The Base consists of 12 identifiable developed areas. Of the developed areas, the Hadnot Point Industrial Area (HPIA) comprises the most concentrated area of development. Directly north of the HPIA are family housing areas concentrated throughout the wooded areas of the central Complex and along the shores of the New River. Also located in this north central area are major personnel support land uses, including the Naval Hospital, school sites, recreational areas, as well as additional family housing areas (Midway Park and Tarawa Terrace I and II).

MCAS New River and Camp Geiger are considered as a single urban area possessing two separate missions and supported by two unrelated groups of personnel. MCAS New River encompasses 2,772 acres and is located in the northwestern section of the Base and lies approximately five miles south of Jacksonville. The MCAS includes air support activities, troop housing and personnel support facilities, all of which immediately surround the aircraft operations and maintenance areas.

Camp Geiger, located directly north of MCAS New River, contains a mixture of troop housing, personnel support and training uses. Currently, the area is utilized by a number of groups which have no direct relationship to one another. The majority of the land surrounding this area is comprised of buffer zones and unbuildable marshland.

MCB, Camp Lejeune contains five other areas of concentrated development, all of which are much smaller in size and population than either the HPIA, MCAS New River, or the Camp Geiger area. The oldest of these is the Montford Point area, which is bounded by the New River to the south and west and by Route 24 on the north. New development in Montford Point has been limited, with most of the facilities for troop housing, maintenance, supply and personnel support having been converted from their intended uses. A majority of the MCB training schools requiring classroom instruction are located here and use surrounding undeveloped areas for training operations when required.

The French Creek area, located directly south of the HPIA, is occupied by the 2nd Force Service Support Group (2nd FSSG). Its activities are directed toward providing combat service and technical support as required by Headquarters, II Marine Expeditionary Force. Expansion of the French Creek Complex is constrained by the Ordnance Storage Depot explosives safety arc on the south and by the regimental area of the HPIA.

Onslow Beach, located along the Onslow Bay, east of the New River Inlet, presents assets for amphibious training as well as recreational use. Courthouse Bay is located on one of a series of small bays formed by the New River. This area is used for maintenance, storage and training associated with amphibious vehicles and heavy engineering equipment. The Engineering School, also located here, conducts training activities in the large open area located to the southeast of the Courthouse Bay.

Another concentrated area of development is the Rifle Range. This area is located on the southwest side of the New River and has only a small number of assigned personnel. It was constructed in the early stages of Base development and is used solely for rifle qualification training. The small group of barracks, located at the Rifle Range, are used for two-week periods by troops assigned to range training.

2.2 History and Mission of Camp Lejeune

Construction of MCB, Camp Lejeune began in 1941 with the objective of developing the "World's Most Complete Amphibious Training Base." Construction of the Base started at the HPIA, where the major functions of the Base are centered. Development at MCB, Camp Lejeune is primarily in five geographical locations under the jurisdiction of the Base Command as mentioned in Section 2.1.

The Base organization functions as the host command to the two Fleet Marine Force Atlantic (FMFLANT) tenant activities, - Headquarters of the II Marine Expeditionary Division, and the 2nd FSSG. The Base host organization is mission is to provide housing, training facilities, logistical support and certain administrative support for tenant units and for other units assigned to MCB, Camp Lejeune and to conduct specialized schools and other training maneuvers, as directed.

The missions of the 6th Marine Expeditionary Brigade, the 2nd Marine Division, and the 2nd FSSG are as follows. The 6th Marine Expeditionary Brigade's mission is to provide the Command element for a brigade-size Marine Air Ground Task Force (MAGTF). The mission of the 2nd Marine Division is to execute amphibious assault operations, and other operations as may be directed, which are supported by Marine aviation and force service support units. With the aircraft wing, the Marine division provides combined arms for service with the Fleet in the seizure or defense of advanced naval bases and for the conduct of land operations essential to the prosecution of a naval campaign.

The mission of the 2nd FSSG is to command, administer and train assigned units in order to provide combat service and technical support as required by Headquarters FMFLANT and its subordinate command in accomplishment of the overall FMFLANT mission.

2.3 <u>Land Use and Demographics</u>

MCB, Camp Lejeune presently covers an area of approximately 236 square miles. Currently, the military population of MCB, Camp Lejeune is approximately 41,000 active duty personnel. The military dependent community is more than 32,000 civilian employees performing facilities management and support functions. The population of Onslow County has grown from 17,738 in 1940, before the formation of the Base, to its present population of 121,350.

During World War II, MCB, Camp Lejeune was used as a training area to prepare Marines for combat. This has been a continuing function of the facility during the Korean and Vietnam Conflicts, and the Gulf War. Toward the end of World War II, the Base was designated as home for the Second Marine Division. Since then, Fleet Marine Forces units also have been stationed here as tenant commands.

The existing land patterns in the various geographic areas within the Base are listed, per geographic area, on Table 2-1. In addition, the number of acres comprising each land use category has been estimated and provided on the table.

2.4 Regulatory History

MCB, Camp Lejeune was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List (NPL) effective November 4, 1989 (54 Federal Register 41015, October 4, 1989). Subsequent to this listing, the United States Environmental Protection Agency (USEPA) Region IV, the North Carolina Department of Environment and Natural Resources (NC DENR), the DoN and the Marine Corps entered into a Federal Facilities Agreement (FFA) for Base, Camp Lejeune. The primary purpose of the FFA was to ensure that environmental impacts associated with past and present activities at the Base were thoroughly investigated, and that appropriate CERCLA response and Resource Conservation Recovery Act (RCRA) corrective action alternatives were developed and implemented as necessary to protect the public health and welfare, and the environment (MCB, Camp Lejeune FFA, 1989).

MCB, Camp Lejeune was issued a RCRA Part B Permit to operate a hazardous waste container storage facility in September 1984 for the long-term hazardous material/hazardous waste container storage facility (Buildings TP-451 and TP-463). This permit was issued before the

enactment of the Hazardous and Solid Waste Amendments of 1984 (HSWA), which under Section 3004(u) empowers the USEPA to order corrective action at treatment, storage, and disposal (TSD) facilities. This section of the HSWA requires corrective action to be taken for all releases of hazardous waste or hazardous constituents from any SWMU (EnSafe, 1996). MCB, Camp Lejeune generates various hazardous wastes which can generally be classified as waste batteries, waste oil filters, waste solvents, waste paint, discarded commercial chemical products, and others (EnSafe, 1996). Waste batteries are made up of lithium, magnesium, mercury, nickel-cadmium, and electrolyte. Spent lithium batteries, if not deactivated, can be reactive. Magnesium and mercury batteries may be hazardous due to chromium and mercury contents. Nickel-cadmium batteries may be hazardous due to cadmium levels. Waste electrolyte can be generated when lead-acid batteries are drained, wet cell nickel-cadmium batteries are discarded, or when waste electrolyte is discarded. Electrolyte can be hazardous based on corrosivity properties and/or lead or cadmium contents (EnSafe, 1996).

Waste oil filters are routinely generated from vehicle and aircraft maintenance operations. In the past when terne-plated filters were used, they were classified as hazardous waste due to their lead content (EnSafe, 1996).

Solvents such as methyl ethyl ketone (MEK), toluene, xylene, and methylene chloride are used in vehicle, military hardware, and aircraft maintenance. These types of solvents exhibit a RCRA characteristic or are listed as a RCRA hazardous waste (EnSafe, 1996).

Several types of waste paint are generated at the Base: enamel, chemical-resistive coating, epoxy, and oil-based. Some of these waste paints may exhibit a RCRA characteristic and/or contain a RCRA-listed hazardous waste (EnSafe, 1996).

The Naval Hospital located on Base is a major generator of discarded commercial chemical products. Generally, these products are discarded due to expired shelf life. Some of these discarded products may be classified as hazardous waste (EnSafe, 1996).

3.0 ENVIRONMENTAL SETTING

This section presents a discussion of the physical characteristics of MCB, Camp Lejeune. The discussion details the topography and surface features, hydrology, geology, hydrogeology, land usage, climatology, water supply, ecology, wetlands, and threatened and endangered species. This information was obtained from the available literature about MCB, Camp Lejeune.

3.1 Climatology

Although coastal North Carolina lacks distinct wet and dry seasons, there is some seasonal variation in average precipitation (see Table 3-1). July receives the most precipitation and rainfall amounts during summer are generally the greatest. Daily showers during the summer are common, and so are periods of one or two weeks without rain. Convective showers and thunderstorms contribute to the variability of precipitation during the summer months. October receives the least amount of precipitation, on average. Throughout the winter and spring months precipitation occurs primarily as migratory low pressure storms. MCB, Camp Lejeune's average yearly rainfall is approximately 52 inches. Table 3-1 presents a climatic summary of data collected during 35 years (January 1955 to December 1990) of observations at MCAS New River.

MCB, Camp Lejeune experiences hot and humid summers, however, ocean breezes frequently produce cooling effects. The winter months are mild, with occasional brief cold spells. Average daily temperatures range from 38°F to 58°F in January and 72°F to 86°F in July. The average relative humidity, between 75 and 85 percent, does not vary greatly from season to season.

3.2 Topography and Surface Features

The generally flat topography of MCB, Camp Lejeune is typical of the North Carolina Coastal Plain. Elevations on the Base vary from sea level to 72 feet above mean sea level (msl); however, the elevation of most of MCB, Camp Lejeune is between 20 and 40 feet msl. (Figure 3-1)

Drainage at Camp Lejeune is generally toward the New River, except in areas near the coast that drain through the Intracoastal Waterway. In developed areas, natural drainage has been altered by asphalt cover, storm sewers, and drainage ditches. Approximately 70 percent of Camp Lejeune is in broad, flat interstream areas. Drainage is poor in these areas and the soils are often

wet (WAR, 1983). The U.S. Army, Corps of Engineers has mapped the limits of 100-year floodplain at Camp Lejeune at 7.0 feet above msl in the upper reaches of the New River increasing downstream to 11 feet above msl near the coastal area (WAR, 1983).

3.3 Surface Soil Associations

The soil survey report for MCB, Camp Lejeune was prepared by the Soil Conservation Service (SCS) in 1984. Since that time, an updated report for Onslow County was issued by the SCS in 1992. Information provided in this section was obtained from these two reports.

Figure 3.2 shows the general soil associations in Onslow County which includes MCB, Camp Lejeune. A soil association is a landscape that exhibits a distinctive pattern based on soils, drainage and relief. These associations consist of one or more major soil types and at least one minor soil type. The association is then named for the major soil(s). A soil type from one association can exist in other associations, but commonly in a different pattern or percentage.

The two terms, loam and muck, are specifically used to describe soils. A loam is a soil that contains less than 52 percent sand, 28 to 50 percent silt, and 7 to 27 percent clay. A muck is a dark, finely layered, well decomposed, and contains organic soil material.

Six soil associations occur at MCB, Camp Lejeune. The Baymeade-Foreston-Stallings soil association is the most widely distributed soil group at the Base. The other soil associations that are present are the Leon-Murville-Kureb, Muckalee-Dorovan, Wando-Pactolus, Norfolk-Goldsboro-Onslow and Bohicket-Newman. Two other soil associations occur in Onslow County but, not present at MCB, Camp Lejeune (Croatan and Rains-Woodington-Torhunta Associations); however, individual soil types from these last two associations are found at MCB, Camp Lejeune. Detailed information on the specific associations are provided in Appendix A.

3.4 Subsurface Geology

MCB, Camp Lejeune is within the Tidewater region of the Atlantic Coastal Plain physiographic province. The sediments of the Atlantic Coastal Plain consist mostly of interbedded sands, silts, clays, calcareous clays, shell beds, sandstone and limestone. These sediments are layered in interfingering beds and lenses that gently dip and thicken to the southeast to a combined thickness of approximately 1,500 feet. They were deposited in marine or near-shore environments and

range in age from early Cretaceous to Quaternary time. Regionally, the sediments comprise 10 aquifers and nine confining units which overlie igneous and metamorphic basement rocks of the pre-Cretaceous age.

Seven of these aquifers and their associated confining units are present in the MCB, Camp Lejeune area (Cardinell, et al., 1993). Table 3-2 presents a generalized stratigraphic column for Jones and Onslow Counties, North Carolina. Hydrogeologic section location plan and hydrogeologic cross-sections of the MCB, Camp Lejeune area are presented in the Hydrogeologic Framework of U.S. Marine Corps Base at Camp Lejeune, North Carolina (Cardinell, et al, 1993). The following paragraphs provide a description of the lithology of the surficial, Castle Hayne, Beaufort, and Peedee aquifers as presented in the Hydrogeologic Framework of U.S. Marine Corps Base at Camp Lejeune, North Carolina.

The surficial aquifer consists of interfingering beds of sand, clay, sandy clay, and silt of Quarternary and Miocene age that contain some peat and shells. The sand beds that make up the surficial are part of the Belgrade Formation (Table 3-2). The clay, sandy clay, and silt beds observed within the surficial aquifer are thin and discontinuous, and have limited lateral continuity. The general lithology of the surficial aquifer and the absence of any thick, continuous clay beds are indications of good vertical conductivity within the aquifer.

The confining unit for the Castle Hayne aquifer is composed of clay, silt, and sandy clay beds. These beds form a unit across the Base that may be represented by one or more geological units such as the Quaternary or Miocene deposits at the bottom of the surficial aquifer, the uppermost beds of the River Bend Formation or the uppermost beds of the Castle Hayne Formation. In general, the Castle Hayne confining unit at MCB, Camp Lejeune may be described as a group of less permeable beds at the top of the Castle Hayne aquifer that have been partly eroded. This confining unit may only be partly effective in retarding the vertical movement of groundwater between the surficial and Castle Hayne aquifers.

The Castle Hayne aquifer consists of soils from the Castle Hayne Formation of Eocene age and some lower beds of the River Bend Formation of Oligocene age. This aquifer primarily consists of sand, shell rock, and limestone beds. The upper part of the aquifer consists primarily of calcareous sand with some continuous and discontinuous thin clay and silt beds (generally 10 to 15 feet thick). The calcareous sand becomes more limy with depth. The lower part of the aquifer

primarily consists of consolidated or poorly consolidated limestone and sandy limestone interbedded with clay and sand.

The Beaufort confining unit overlies the Beaufort aquifer and consists of clay, silt, and sandy clay or the uppermost sediments of the Beaufort Formation and the lowermost clay and silt beds of the overlying Castle Hayne Formation. The general silty character of this confining unit is very similar to the Castle Hayne confining unit. Although the deeper unit is slightly thicker and is not known to be discontinuous, it also is likely to be only partly effective in retarding the vertical exchange of groundwater between the Beaufort and Castle Hayne aquifers.

The Beaufort aquifer underlies the Beaufort confining unit and the Castle Hayne aquifer and is composed of Paleocene aged soils. These deposits consist of fine to medium glauconitic sand, clayey sand, and clay meds or marine origin, with a few thin (3 to 6 feet) shell and limestone beds. As with other hydrogeologic units, the Beaufort aquifer is not necessarily restricted to a single formation and may include permeable beds of older Cretaceous formations that are in hydraulic connection with the aquifer.

The confining unit for the Peedee aquifer is composed of clay, silt, and sandy clay beds that form the uppermost units of the Peedee Formation. In some places, the confining unit may also include the lowermost beds of the Beaufort Formation.

The Peedee aquifer underlies the Peedee confining unit and the Beaufort aquifer. It is composed primarily of sand of the Peedee Formation (Cretaceous age). A few thin beds of calcareous sandstone, limestone, clay and silt are interlayered with the sand within the Peedee Formation.

The Black Creek confining unit, which underlies the Pedee aquifer, is composed of clay, silty clay and sandy-clay beds. The confining unit's beds belong to the lowermost Pedee Formation and uppermost Black Creek Formation.

The Black Creek aquifer, primarily composed of units from the Black Creek Formation, is formed from thinly-laminated clays interlayered with sands, clean sands and clays and layers including lignitized wood. This aquifer occurs throughout the MCB, Camp Lejeune area, but contains saltwater.

The Black Creek aquifer is underlain by the Upper Cape Fear confining unit and the Upper Cape Fear aquifer. The Upper Cape Fear confining unit is composed of clay and silt beds with local thin sand lenses from layers belonging to the lower Black Creek Formation and the Upper Cape Fear Formation.

The Upper Cape Fear aquifer is present throughout the MCB, Camp Lejeune area and also contains saltwater. The Upper Cape Fear aquifer is composed of 3 to 5 foot layers of sand and clay. The sands in the aquifer range from fine to course with some gravel.

Below the Upper Cape Fear lies the Lower Cape Fear confining unit and the Lower Cape Fear aquifer. The Lower Cape Fear confining unit is beds of silt and clay from the Cape Fear Formation. However, the Upper and Lower Cape Fear aquifers are defined by a difference in head pressure and chloride content. The Lower Cape Fear confining unit may not completely separate these two aquifers.

The lower Cape Fear aquifer contains saltwater and underlies the entire MCB, Camp Lejeune area. The sediments that form the lower Cape Fear aquifer are similar to those in the upper Cape Fear but include thin limestone beds.

As part of this investigation, a total of 50 soil borings were advanced continuously at locations throughout the base. The lithology encountered during the investigation consisted primarily of fine sand with varying amounts of silt and clay. In areas, silty and/or clayey strata predominated. Refer to the boring logs that are presented in Appendix B for information regarding the lithology encountered at the individual soil boring locations. The lithologic conditions at MCB, Camp Lejeune are discussed in further detail and related to the hydrogeologic framework of the region in Section 3-4.

3.5 Hydrogeology

The following paragraphs discuss the hydrogeologic conditions at MCB, Camp Lejeune. The information presented within this section is from literature published by the United States Geological Survey (USGS) (Harned, et al., 1989 and Cardinell, et al., 1993). Additionally, information was collected from a technical memorandum prepared by Baker summarizing groundwater data and aquifer characteristics for MCB, Camp Lejeune (see Appendix C). Table 3-3 provides a summary of estimated hydraulic properties for the Castle Hayne aquifer.

USGS studies at MCB, Camp Lejeune indicate that the area is underlain by sand and limestone aquifers separated by confining units of silt and clay. These aquifers include the surficial (water table), Castle Hayne, Beaufort, Peedee, Black Creek, and upper and lower Cape Fear. Less permeable clay and silt beds function as confining units or semi-confining units that separate the aquifers and impede the flow of groundwater between aquifers.

The surficial unit consists of interfingering beds of sand, clay, sandy clay and silt that contain some peat and shells of Quaternary and Miocene age as described in Section 3-4. These sediments commonly extend to depths of 50 to 100 feet below ground surface (bgs). Thickness of the surficial aquifer in the MCB, Camp Lejeune area ranges from zero to 73 feet, and typically average 25 feet (Cardinell, et al., 1993). The aquifer is generally thickest in the interstream divide areas and may be absent where it is cut by the New River and its tributaries. The clay, sandy clay, and silt beds that occur in the surficial aquifer are thin and discontinuous throughout. A semi-confining unit is found in the surficial aquifer within some portions of MCB, Camp Lejeune.

Recharge to the surficial aquifer is by rainfall. The aquifer receives more recharge in the winter than in the summer when much of the water evaporates or is transpired by plants before it can reach the water table. Most of the surficial groundwater is discharged to local streams, but some water passes through the underlying semiconfining unit. Recharge for the surficial aquifer is based on an average rainfall of 52 inches per year and an average recharge of 30 percent, or an annual recharge of approximately 16 inches per year. The remaining 70 percent of the rainfall is lost as surface runoff or evapotranspiration. Sixteen inches of recharge equates to 7,600,000 gallons per day (gpd) per square mile or approximately 114,000,000 gpd for all of MCB, Camp Lejeune (based on 150 square miles of recharge area). Water levels in the wells tapping the surficial aquifer vary seasonally. The water table is generally highest in the winter and spring, and lowest in the summer and early fall. The lateral hydraulic conductivity for the surficial aquifer was estimated by the USGS at 50 feet per day (ft/day) based on a general soil composition of fine sand mixed with some silt and clay (Cardinal, et al., 1993).

A study of data from aquifer tests (pump tests) done at MCB, Camp Lejeune was conducted by Baker in 1994 to evaluate aquifer characteristics and production capacities. The technical memorandum is provided in Appendix C. The information contained in this memorandum pertains primarily to the surficial aquifer. According to information available at the time the memorandum was composed, the average pumping rates for the surficial aquifer were established

between 0.5 to three gallons per minute (gpm); transmissivity ranged from 7.1 to 7,100 square feet per day (ft²/day); storativity ranged from 1.5×10^3 to 7.5×10^2 ; and hydraulic conductivity was estimated to range from 0.5 to 1.4 ft/day. This data indicates that the estimated lateral hydraulic conductivity reported by USGS may be higher than actual conditions in the vicinity of MCB, Camp Lejeune.

Although the aquifer is classified as GA (i.e., existing or a potential source of drinking water supply for humans), it is not used as a potable water source at MCB, Camp Lejeune. The primary reason for it's non-use is because of its low yielding production rates which are typically less than three gpm.

The principal water supply aquifer for MCB, Camp Lejeune is the Castle Hayne aquifer. This aquifer primarily resides within the River Bend Formation which consists of sand, cemented shells and limestone as described in Section 3-4. Buried paleostream channels containing various deposits exist within the aquifer. The top of the aquifer ranges from 10 feet above msl to 70 feet below msl and is irregular over most of the northern portion of MCB, Camp Lejeune. The aquifer is more regular in areas southeast of the New River, where it slopes southeastward. The Castle Hayne thickens to the east, from 160 feet in the Camp Geiger area to more than 400 feet at the eastern boundary of MCB, Camp Lejeune.

The vertical hydraulic conductivity of the Castle Hayne confining unit was estimated to range from 0.0014 to 0.41 ft/d. These values are comparable to those determined for silts and clays and therefore, this unit may only be partly effective at retarding the vertical movement of groundwater between the surficial and Castle Hayne aquifers (Cardinell, et al., 1993).

Estimated transmissivity, hydraulic conductivity and storage coefficient values (unitless) for the Castle Hayne aquifer range from 6,100 to 183,300 gpd/ft, 14 to 91 ft/d and 2×10^{-4} to 1.9×10^{-3} , respectively. An aquifer pump test conducted by ESE (1990) in the HPIA, using an existing water supply well (HP642), indicates an average transmissivity and storage coefficient of 9,600 gpd/ft and 8.8×10^{-4} , respectively (ESE, 1990). Table 3-3 summarizes the previously stated information.

Recharge of the Castle Hayne aquifer at MCB, Camp Lejeune is primarily received from the surficial aquifer. Natural discharge is to the New River and its major tributaries. The Castle

Hayne aquifer provides roughly seven million gallons of water to MCB, Camp Lejeune. Groundwater pumping has not significantly affected natural head gradients in the aquifer.

MCB, Camp Lejeune lies in an area where the upper part of the Castle Hayne aquifer contains freshwater. Saltwater is found in the bottom of the aquifer in the region and in the New River estuary; both are of concern in managing water withdrawals from the aquifer. Over pumping the deeper parts of the aquifer or in areas hydraulically connected to estuarine streams could cause saltwater intrusions. The aquifer underlying most of the area contains water having less than 120 milligrams per liter (mg/L) of chloride.

3.6 Water Supply

Potable water for MCB, Camp Lejeune is supplied entirely by groundwater. Groundwater usage is roughly seven million gpd (Cardinell, et al., 1993). Groundwater is pumped from approximately 77 of 90 water supply wells located within the boundaries of MCB, Camp Lejeune. According to Base personnel, groundwater is treated at five plants located at Hadnot Point, Holcomb Boulevard, MCAS New River, Courthouse Bay, and Onslow Beach having a total capacity of 15.8 million gpd.

All of the water supply wells use the Castle Hayne aquifer. The Castle Hayne aquifer is a highly permeable, semi-confined aquifer that can yield several hundred to 1,000 gpm in municipal and industrial wells in the MCB, Camp Lejeune area. The water supply wells at the Base average 162 feet in depth; eight inches in diameter (casing); and yield 174 gpm (Harned, et al., 1989). The water is typically a hard, calcium bicarbonate type. Information concerning the supply wells was gathered from the Wellhead Management Program Engineering Study 91-36 (Geophex, 1991), the Preliminary Draft Report Wellhead Monitoring Study 92-34 (Greenhorne and O'Mara, Inc., 1992), and interviews with Base personnel.

3.7 Surface Water Hydrology

The following summary of surface water hydrology was originally presented in the Initial Assessment Study (IAS) report (WAR, 1983). The dominant surface water body at MCB, Camp Lejeune is the New River. It receives drainage from most of the Base. The river is short, with a course of approximately 50 miles on the central Coastal Plain of North Carolina. Over most of its course, the New River is confined to a narrow channel entrenched in Eocene and Oligocene

limestones. South of Jacksonville, the river widens as it flows across less resistant sands, clays, and marls. At MCB, Camp Lejeune, the New River flows in a southerly direction into the Atlantic Ocean through the New River Inlet. Several small coastal creeks that are not associated with the New River or its tributaries drain into the area of MCB, Camp Lejeune. The New River, the Intracoastal Waterway, and the Atlantic Ocean converge at the New River Inlet.

Classifications for surface waters in North Carolina have been published under Title 15 of the North Carolina Administration Code. At MCB, Camp Lejeune, the New River falls into three classifications. The portion of the river that passes from the Seaboard Coast Line railroad trestle (located south/southwest of where U.S. Route 17/North Carolina Route 24 crosses the New River) to Montford Point is classified as SC NSW HQW. This classification is defined as salt waters protected for secondary recreation, fishing, aquatic life including propagation and survival (SC) that are nutrient sensitive (NSW) and of high quality (HQW). The portion of the river that resides between Montford Point to a line extending across the river from Grey Point to a point of land approximately 2,200 yards downstream of the mouth of Duck Creek is classified as Class SC NSW. As previously described, these waters are similar to the waters upstream of Montford Point, however they are not considered high quality waters. The remaining portion of the New River is classified as estuarine water suited for commercial shell fishing and all other tidal saltwater uses (SA).

3.8 Ecological Characteristics

The Natural Resources and Environmental Affairs (NREA) Division of MCB, Camp Lejeune, the U.S. Fish and Wildlife Service, and the North Carolina Wildlife Resource Commission have entered into an agreement for the protection of endangered and threatened species that might inhabit MCB, Camp Lejeune. Habitats are maintained at MCB, Camp Lejeune for the preservation and protection of rare and endangered species through the Base's forest and wildlife management programs. Full protection is provided to such species, and critical habitat is designated in management plans to prevent or mitigate adverse effects of Base activities. Special emphasis is placed on habitat and sightings of alligators, osprey, bald eagles, cougars, dusky seaside sparrows, and red-cockaded woodpeckers (WAR, 1983).

Camp Lejeune covers approximately 236 square miles, 84 percent of which is forested (USMC, 1987). Approximately 45 percent of this is pine forest, 22 percent is mixed pine/hardwood forest, and 17 percent is hardwood forest. Nine percent of the Base, a total of 3,587 acres, is wetland and

includes pure pond pine stands, mixed pond pine/hardwood stands, marshes, pocosins, and wooded swamps. The Base also contains 80 miles of tidal streams, 21 miles of marine shoreline, and 12 freshwater ponds. Over half of the 153,000 acres located within the boundaries of MCB, Camp Lejeune are under forestry management. Timber producing areas are under even-aged management with the exception of those areas along streams and swamps. These areas are managed to provide both wildlife habitat and erosion control. Forest management provides wood production, increased wildlife populations, enhancement of natural beauty, soil protection, prevention of stream pollution, and protection of endangered species (WAR, 1983).

Because of the natural resources on the Base, forested areas are actively managed for timber. Game species are also managed for hunting, and ponds are maintained for fishing. Game species managed include wild turkey, white-tailed deer, black bear, grey and fox squirrels, bobwhite quail, eastern cottontail and marsh rabbits, raccoons, and wood ducks.

Aquatic ecosystems on MCB, Camp Lejeune consist of small lakes, the New River estuary, numerous tributaries, creeks, and part of the Intracoastal Waterway. A wide variety of freshwater and saltwater fish species exist here. Freshwater ponds are under management to produce optimum yields and ensure continued harvest of desirable fish species (WAR, 1983). Freshwater fish in the streams and ponds include largemouth bass, redbreast sunfish, bluegill, chain pickerel, yellow perch, and catfish. Reptiles include alligators, turtles, and snakes (including venomous species). Both recreational and commercial fishing are practiced in the waterways of the New River and its tributaries (WAR, 1983).

Many natural communities are present in the coastal plain. Subcommunities and variations of these major community types are also present and alterations of natural communities have occurred in response to disturbance and intervention (i.e., forest cleared to become pasture). The natural communities found in the Camp Lejeune area are summarized as follows:

- Loblolly Pine Forest a dominant forest type at Camp Lejeune. Pine forest often has a
 dense hardwood subcanopy and shrub understory because of clear-cutting and/or fire
 suppression. Dense shading results in a sparse ground layer of vegetation with little
 probability or rare species occurring (LeBlond et. al., 1994).
- Hardwood Forest Found primarily in stream floodplains and on slopes and terraces next to stream valleys and estuarine features. Stream floodplain communities include cypress -

gum swamp and coastal plain small stream swamp. Very few rare species are found in hardwood forests, but the communities themselves can be quite rare (LeBlond et. al., 1994).

- Loblolly Pine/Hardwoods Community The predominant forest type at Camp Lejeune. Second growth forest that includes loblolly pine with a mix of hardwoods - oak, hickory, sweetgum, sour gum, red maple, and holly (oak is the predominant hardwood). These forests have a low probability for rare species because of the lack of herbaceous development and overall plant diversity (LeBlond et. al., 1994).
- Longleaf Pine Forest and Longleaf Pine/Hardwood Forests Contain critical, fire maintained natural communities: Pine Savanna, Wet Pine Flatwoods, Mesic Pine Flatwoods, Pine/Scrub Oak Sanhill, and Zeric Sanhill Scrub. Some longleaf pine forests have developed in old fields and cut-over areas. The Federal endangered red-cockaded woodpecker (Picoides Borealis) is essentially restricted to opened, burned longleaf pine forests. The pine savannas and wet pine flatwood communities are particularly important habitats for several rare species (LeBlond et. al., 1994).
- Maritime Forest Develop on the lee side of stable sands and dunes protected from the
 ocean. Live oak is an indicator species with pine, cedar, yaupon, holly, and laurel oak.
 Deciduous hardwoods may be present where forest is mature (USMC, 1987).
- Pond Pine Forest These forests are primarily found in pocosins and are classified by Schafale and Wealkey (1990) as the Pond Pine Woodland natural community. Red bay, sweet bay, and loblolly bay are important components of this community. These forests frequently produce areas of high plant diversity and support several rare species. The Federal endangered loosestrife (<u>Lysimachia asperulifolia</u>) is found in this community (LeBlond et. al., 1994).
- Freshwater Marsh Occurs upstream from tidal marshes and downstream from non-tidal freshwater wetlands. Cattails, sedges, and rushes are present, On the coast of North Carolina, swamps are more common than marshes (USMC, 1987).
- Salt Marsh These areas occur in saline tidal areas protected from tidal action by barrier beach features. The barrier islands fronting the Atlantic Ocean support Brackish Marsh,

Upper Beach, Dune Grass, and Maritime Wet and Dry Grassland communities. Regularly flooded, tidally influenced areas dominated by salt-tolerant grasses. Saltwater cordgrass is a characteristic species. Tidal mud flats may be present during low tide. These dynamic communities are critical to such Federal endangered species as the piping plover (Charadrius Melodus) and the Federal threatened American loggerhead turtle (Caretta caretta) and the green turtle (Chelonia Mydas) (LeBlond et. al., 1994).

- Salt Shrub Thicket High areas of salt marshes and beach areas behind dunes. Subjected to salt spray and periodic saltwater flooding. Dominated by salt resistant shrubs.
- Dunes/Beaches Zones from the ocean shore to the maritime forest. Subjected to sand, salt, wind, and water.
- Ponds and Lakes Low depressional areas where water table reaches the surface or where
 ground is impermeable. In ponds rooted plants can grow across the bottom, Fish
 populations managed in these ponds include redear, bluegill, largemouth bass, and
 channel catfish (USMC, 1987).
- Open Water Marine and estuarine water and all underlying bottoms below the intertidal zone.

3.9 Wetlands

The NC DENR's Division of Environmental Management (DEM) has developed guidance concerning activities that may impact wetlands (NC DENR, 1992). In addition, certain activities affecting wetlands also are regulated by the U.S. Corps of Engineers. The U.S. Fish and Wildlife Service has prepared National Wetland Inventory (NWI) maps for the Camp Lejeune, North Carolina area by stereoscopic analysis of high altitude aerial photographs (USDI, 1982).

Wetland ecosystems at MCB, Camp Lejeune can be categorized into five habitat types: (1) pond pine or pocosin; (2) sweet gum, water oak, cypress, and tupelo; (3) sweet bay, swamp black gum, and red maple; (4) tidal marshes; and, (5) coastal beaches. Pocosins provide excellent habitat for bear and deer because these areas are seldom disturbed by humans. The presence of pocosin-type habitat at MCB, Camp Lejeune is primarily responsible for the continued existence of black bear

in the area. Many of the pocosins are overgrown with brush and pine species that would not be profitable to harvest (WAR, 1983).

Sweet gum, water oak, cypress, and tupelo habitat is found in the rich, moist bottomlands along streams and rivers. This habitat extends to the marine shorelines. Deer, bear, turkey, and waterfowl are commonly found in this type of habitat (WAR, 1983).

Sweet bay, swamp black gum, and red maple habitat exist in the floodplain areas of MCB, Camp Lejeune. Fauna including waterfowl, mink, otter, raccoon, deer, bear, and gray squirrel frequent this habitat (WAR, 1983).

The tidal marsh at the mouth of the New River is one of the few remaining North Carolina coastal areas relatively free from filling or other manmade changes. This habitat, which consists of marsh and aquatic plants such as algae, cattails, saltgrass, cordgrass, bulrush, and spikerush, provides wildlife with food and cover. Migratory waterfowl, alligators, raccoons, and river otter exist in this habitat (WAR, 1983).

Coastal beaches along the Intracoastal Waterway and along the outer banks of MCB, Camp Lejeune are used for recreation and to house a small military command unit. Basic assault training maneuvers are also conducted along these beaches. Training regulations presently restrict activities that would impact ecologically sensitive coastal barrier dunes. The coastal beaches provides habitat for many shorebirds (WAR, 1983).

3.10 Threatened and Endangered Species

Certain species have been granted protection by the U.S. Fish and Wildlife Services under the Federal Endangered Species Act (16 United States Code (U.S.C.) 1531-1543), and/or by the North Carolina Wildlife Resources Commission, under the North Carolina Endangered Species Act (G.S. 113-331 to 113-337). The protected species fall into one of the following status classifications: Federal or state endangered, threatened, or candidate species; state special concern; state significantly rare; or state watch list. While only the Federal or state threatened or endangered and state special concern species are protected from certain actions, the other classified species have the potential for protection in the future.

Surveys have been conducted to identify threatened or endangered species at Camp Lejeune and several programs are underway to manage and protect them. Table 3-4 lists protected species present at the Base and their protected classifications. Of these species, the red-cockaded woodpecker, American alligator, and sea turtles are covered by specific protection programs.

The red-cockaded woodpecker is classified as state endangered. This species requires a specific habitat in mature, living longleaf or loblolly pine trees. The birds exist in family groups and young are raised cooperatively. At Camp Lejeune, 2,512 acres of habitat have been identified and marked for protection. Research on the bird at Camp Lejeune began in 1985 and information has been collected to determine home ranges, population size and composition, reproductive success, and habitat use. An annual roost survey is conducted and 36 colonies of birds have been located.

The American alligator is considered threatened in the northernmost part of its range, which includes North Carolina. The alligator is found in freshwater, estuarine, and saltwater wetlands in Camp Lejeune. Base wetlands are maintained and protected for the alligator. Signs have been erected where alligators are known to live. Annual surveys of Wallace, Southwest, French, Duck, Mill, and Stone Creeks have been conducted since 1977 to identify alligators and their habitats on Base.

Two protected sea turtles, the Atlantic loggerhead and Atlantic green turtle, nest on Onslow Beach at Camp Lejeune and are both classified as threatened species. The green turtle was found nesting in 1980; the sighting was the first time the species was observed nesting north of Georgia. The turtle returned to nest in 1985. Turtle nests on the beach are surveyed and protected, turtles are tagged, and annual turtle status reports are issued.

Four bird species (black skimmer, piping plover, Bachman's sparrow, and peregrine falcon) have also been identified during surveys at Camp Lejeune. The piping plover and peregrine falcon are classified as threatened species. The black skimmer and Bachman's sparrow are classified as special concern (state). The black skimmer and piping plover are sea and shore birds respectively. Skimmers nest on low sandy islands and sand bars along the coast and piping plovers prefer beaches with broad open sandy flats above the high tide line. Skimmers feed above open water and piping plovers feed along the edge of incoming waves. Like the black skimmer and piping plover, Bachman's sparrows are very specific in their habitat requirements. They live in open stretches of pines with grasses and scattered shrubs for ground cover. Bachman's sparrows were observed at numerous locations throughout the southern portion of Camp Lejeune.

In addition to the protected species that breed or forage at Camp Lejeune, several protected whales migrate through the coastal waters off the base during the spring and fall. These include the Atlantic right whale, finback whale, sea whale, and sperm whale. Before artillery or bombing practice is conducted in the area, aerial surveys are made to assure that whales are not present in the impact areas.

A natural heritage resources survey was conducted at Camp Lejeune (LeBlond, 1991) to identify threatened or endangered plants and areas of significant natural interest. From this survey, the rough-leaf loosestrife was the only specie identified that is both Federal and state endangered. Also, several state endangered/threatened and Federal and state candidate species were found on the Base.

4.0 BASE BACKGROUND STUDY DESIGN

Naturally occurring constituents such as metals and metaloids occur naturally and ubiquitously in soil; therefore, distinguishing background levels from site-related concentrations is difficult. Because many naturally occurring inorganics also may be of anthropogenic origin, an appropriate number of background samples were obtained to distinguish naturally occurring concentrations.

Distinguishing naturally occurring constituent concentrations from anthropogenic levels is important for risk management and screening remedial alternatives for sites that may pose risks to human health and/or the environment. Anthropogenic chemicals are defined by the USEPA as chemicals that are present in the environment because of manmade, not-site related sources (e.g., industry, automobiles, etc.). Chemicals of anthropogenic origin may include compounds such as lead, arsenic, DDT, DDE, DDD, and polynuclear aromatic hydrocarbons (PAHs).

This study was designed to establish background concentrations of inorganics in surface and subsurface soils throughout the Base. This section explains the rationale for selecting the number of background surface and subsurface soil samples and discusses any deviations from the approved scope of work as a result of field conditions. Specific locations of background samples will be provided in Section 5.0 of this report.

4.1 Background Investigation Design

Naturally occurring elements such as metals and metaloids occur naturally in soils and distinguishing background levels from site-activity related concentrations often requires statistical analysis. Therefore, the number of background soil samples obtained to determine naturally occurring concentrations of inorganics was selected to support the performance of various statistical tests.

Samples were collected from surface and subsurface soils in the same manner as soils collected for site investigations. Section 4.3 provides details of the sampling procedures employed for this investigation. The proposed number of sample locations was based on the potential for varying lithologies across the Base and the locations of existing or potential investigative sites.

A total of fifty soil sampling locations were proposed in the Final SSP for this project. Sample locations were selected based on knowledge of Base activities, discussions with the Navy

Technical Representative (NTR) and MCB, Camp Lejeune's Environmental Management Department (EMD), and professional judgement. Background sample locations were finalized in the field based on site-specific conditions and upon consultation with MCB, Camp Lejeune Fish and Wildlife Division and MCB, Camp Lejeune Range Control to be sure not to disturb sensitive environments or enter into active range areas.

Surface and subsurface soil samples were collected at each of the soil sampling locations. It was anticipated during the design of the sampling program that each of the six surface soil associations discussed in Section 3.3 and several subsurface soil types would be sampled and represented in the database. Therefore, the database could be segregated by depth (surface versus subsurface), lithologies, and location. The following paragraphs provide detailed discussion of the sampling rationale for the background sampling effort.

4.2 Surface Soil Investigation

A soil survey report for Onslow County was issued by the SCS in 1992 that included the surface soils at MCB, Camp Lejeune. The soil survey indicated that there are six major soil associations made up by several different soil categories within the boundaries of MCB, Camp Lejeune (discussed in detail in Appendix A). Fifty soil samples were collected throughout the Base and were distributed amongst the six soil associations as follows:

•	Baymeade-Foreston-Stallings Association	24 samples
•	Leon-Murville-Kureb Association	9 samples
•	Muckalee-Dorovan Association	1 sample
•	Wando-Pactolus Association	4 samples
•	Norfolk-Goldsboro-Onslow Association	9 samples
•	Rains-Woodington-Torhunta Association	3 samples

Based on careful inspection, it was determined that only the Baymeade-Foreston-Stallings Association, Leon-Murville-Kureb Association, and the Norfolk-Goldsboro-Onslow Association

had enough samples to constitute statistically-valid databases. All fifty samples, however, were collected from soil categories that can be either classified as fine sands or loams. The same fifty soil samples referenced above can be distributed between fine sands and loams as follows:

- Fine Sands (such as Baymead, Kureb, Wando, and Pactolus)
 39 samples
- Loams (such as Foreston, Stallings, Leon, Murville, Muckalee, 11 samples
 Norfolk, Goldsboro, and Onslow)

The division of the surface soils into fine sands and loams forms two statistically-valid databases and, therefore, it was determined that the surface soil sample results would be divided into these two databases.

A separate database was created that includes all fifty surface soil samples combined into a single data set. However, this data set should only be used if the origin of the sample to be compared to background can not be determined. Inorganics are present at different concentrations in loams than in fine sands and the combination of these data sets will result in a range of naturally-occurring inorganics that is not representative of either soil type.

4.3 Subsurface Soil Investigation

A single subsurface soil sample was collected from each of the fifty soil borings advanced throughout the base. The depth of the subsurface soil samples ranged from 1 to 24 feet below ground surface (bgs). The samples were collected above the groundwater table so inorganics in groundwater would not affect the concentrations of inorganics in subsurface soils.

The subsurface samples were divided into three main soil categories. The division of these samples were based on the geologist's description of the soils provided in the boring logs provided in Appendix B. The separation of clay-bearing soils from other soils is particularly important for this investigation. As a consequence of the structure of clay minerals, they are effective ion exchangers. This means that clay rich soils tend to attract positively charged ions such as metals and metaloids. Therefore, inorganic concentrations tend to be much higher in clays or clayey soils than in other soil types.

A description of the soil categories and the number of samples collected from each of the categories are as follows:

• Sand (fine to medium grained sand with trace silt) 29 samples

• Sand and Silt (fine to medium grained sand with little 12 samples to some silt)

• Clay (with sand and/or silt fractions) 9 samples

<u>Trace</u> is defined as 0% to 10% of any minor soil constituent; <u>Little</u> is defined as 10% to 30% of any minor soil constituent; and <u>Some</u> is defined as 30% to 50% of the minor constituent.

These soil categories were split into three separate databases for statistical analysis to illustrate the distribution of background concentrations for each geological unit. As more data becomes available from future investigations, new data can be added to expand the existing databases.

As with the surface soils, the subsurface soils were combined to form a single data set. The purpose of this data set is to provide a comparison for subsurface soil samples that do not have associated soil classifications (i.e., sand, silt, clay, etc.). However, caution should be exercised when using the combined data set for comparison. As described in the previous paragraphs, different soil types have properties that effect ion attraction and retention. Therefore, it is anticipated that the arithmetic mean for the combined data set will be higher than the arithmetic mean for sands and lower than the arithmetic mean for clayey soils. The result of this difference in arithmetic means may result in the listing of a sample result as a contaminant of potential concern instead of indicative of background concentrations, or vice versa. The combination of sample results into this combined data set will dilute the range of inorganics naturally occurring in clays at MCB, Camp Lejeune.

5.0 BASE BACKGROUND FIELD INVESTIGATION

The field investigation began on June 19, 2000 and was completed on July 21, 2000. Soil sampling was conducted in accordance with the approved <u>Final Sample Strategy Plan</u> (Baker, 2000) and applicable procedures and techniques presented in the <u>Final Solid Waste Management Unit (SWMU) Confirmatory Sampling Project Plans</u> (Baker, 1997). The following paragraphs summarize these activities as well as describing any modifications to the approved plans made in response to field conditions.

5.1 <u>Pre-Sampling Activities</u>

Sample locations were marked at MCB, Camp Lejeune by Baker personnel between June 19, 2000 and June 27, 2000. MCB, Camp Lejeune Range Control and EMD's Fish and Wildlife Division approved the locations. As previously mentioned, these organizations were consulted to ensure that sampling was not conducted in areas used as active ranges or within protected/endangered habitats. After selection of the sample locations, Jacksonville Professional Locators, Inc. (JPL) visited the locations and determined if each location was clear of all buried underground utilities. If clearance of a sample location was not possible or if the location was in the vicinity of known utilities, the location was offset and clearance was obtained for the offset location. The final location was mapped using a Trimble Pro XR Geographic Positioning System (GPS). The position of the soil boring was stored as a latitude/longitude reading on the 1983 North Carolina state-plane system.

5.2 Soil Sample Collection

Surface and subsurface soil samples were collected in areas that had no history of activity that could increase naturally occurring concentrations of inorganics in surface and subsurface soils. The locations selected for sampling were often remote and required the use of a tripod mounted soil sampler operated by Parratt Wolff, Inc. of Hillsboro, North Carolina. Baker personnel supervised the advancement of 50 soil borings throughout the Base (Figure 5-1).

Split spoon samplers, with a 2-inch outside diameter (O.D.) and 2 foot length, were driven 24-inches by the tripod rig utilizing a 140-pound hammer. After being advanced, the split spoon sampler was removed from the boring, disassembled and handed to the site geologist for soil description and sample collection. All borings were continuously sampled until a desired soil

type was encountered or to the water table at which point the boring was terminated. All borings were backfilled with bentonite pellets that were hydrated in place by the addition of water.

Soils descriptions were recorded in the field logbook by the field geologist, and later transposed onto boring log records. Classification included characterization of soil type, grain size, color, moisture content and other pertinent information. Lithologic descriptions of site soils are provided on the Test Boring Construction Records in Appendix B.

Surface and subsurface soil samples were collected by compositing small portions of soil removed from the length of the core within the split spoon and placed in laboratory provided, four ounce jars using a stainless steel spoon or spatula. Surface soil samples were collected from zero to one foot below ground surface (bgs) after the first few inches of topsoil and matted roots were removed. Subsurface samples were collected at the target depth which was either within a particular soil horizon or directly above groundwater (the last two feet of unsaturated material in the boring).

Soil samples were labeled and temporarily stored in an ice filled cooler. Samples were collected, and the sample number, collection date and time, and sampler were recorded on the label and the chain-of-custody form. The samples were appropriately grouped and packed in an ice filled cooler and sent by Federal Express overnight service to CompuChem Environmental Laboratories in Cary, North Carolina for metals and pH analysis. Chain-of-custody forms are provided in Appendix D.

5.3 Sample Designation

In order to identify and track the various samples, all samples collected during this investigation were designated with unique numbers. The sample numbers served to identify the type of investigation, location, depth and Quality Assurance/Quality Control (QA/QC) sample types. The sample designation format is as follows:

Investigation - Station # - Depth and QA/QC (if applicable)

An explanation of each of these identifiers is provided below.

Investigation This designation indicates that the sample was collected as part of the Base Background Study and not some other investigation conducted at the Base.

Station # Each soil test boring was identified with a unique identification number

and located on a map. This number indicates the location that was

sampled.

<u>Depth</u> Depth indicators were used for each soil sample. The indicator

references the depth interval of the sample. For example:

00 = ground surface to 1 foot below ground surface

01 = 1 to 3 feet below ground surface

02 = 3 to 5 feet below ground surface

03 = 5 to 7 feet below ground surface

04 = 7 to 9 feet below ground surface

05 = 9 to 11 feet below ground surface

QA/QC These indicators follow the depth indicator and are used to designate a

duplicate or matrix spike/matrix spike duplicate sample was collected.

The following indicators were used for designation:

D = Duplicate Sample

MS/MSD = Matrix Spike/Matrix Spike Duplicate

Under this sample designation format, the sample number BASE-BG10-03D refers to:

BASE-BG10-03D Base Background Investigation

BASE-BG10-03D Soil sample from soil boring location number 10

BASE-BG10-03D Sample depth interval 5 to 7 feet below ground surface

BASE-BG10-03D Duplicate sample was collected for QA/QC

5.4 Quality Assurance/Quality Control (QA/QC) Program

Blank samples provide a measure of contamination that has been introduced into a sample set during the collection, transportation, preparation and/or analysis of samples. Two primary sources on non-site related results include laboratory contaminants and naturally-occurring inorganics. In addition, non-site related operational activities and conditions may contribute to "on-site" contamination.

Equipment rinsates are samples obtained by running organic-free water over/through sample collection equipment after it has been cleaned. Equipment rinsates were collected daily during the field investigation. The results from the rinsates are used to evaluate the decontamination methods.

Field blanks consist of the source water used in decontamination. Field blanks were collected as part of the field program by pouring the water from the container directly into sample bottles. AOC8FB01 was collected from distilled water used for the final rinse for small sampling equipment (i.e., split spoon sampler, stainless steel sampling spoons, etc.) and AOC9FB02 was collected from a potable water source at the base used for decontamination of large equipment (i.e., geoprobe rig, sampling rods) used for the field investigation. Field duplicates were collected, homogenized, and split. Field duplicates were collected at a frequency of 10 percent.

Matrix Spike/Matrix Spike Duplicates (MS/MSD) samples were collected to evaluate the matrix effect of the sample upon the analytical methodology. MS/MSD samples were collected for each group of samples of a similar matrix. MS/MSD samples were collected at a frequency of 5 percent.

5.5 Decontamination Procedures

Equipment decontamination was conducted in accordance with the Final SWMU Confirmatory Sampling Project Plans submitted in August 1997 (Baker, 1997). The drill rigs and split spoon samplers were steam cleaned before the initiation of work and at the end of each working day or before work commenced the next day.

Split spoon samplers and all sampling equipment were decontaminated before work commenced and prior to reuse in accordance with USEPA Region IV guidelines and ASTM D 5088-90. The procedures are summarized as follows:

- Equipment was cleaned with tap water and laboratory detergent (liquinox) using a brush to remove particulate mater and surface film;
- Rinsed thoroughly with tap water;
- Rinsed thoroughly with distilled water;
- Rinsed with pesticide grade isopropanol; and
- Allowed to air dry prior to reuse.

5.6 Analytical Program

All soil samples retained for analysis were prepared and handled according to USEPA Region IV Standard Operating Procedures (SOPs) as outlined in the Final SSP (Baker, 2000). The Base Background Study focused on collecting soil samples for inorganics and pH analysis. The soil samples were analyzed for Target Analyte List (TAL) inorganics (Method 6010B/7471A) and pH (ASTM Standard D 4972-95A, US EPA Method 9045). Heartland Environmental Services, Inc. of St. Peters, Missouri validated results of the inorganic analyses; however, pH results were not submitted for third party validation.

6.0 ANALYTICAL RESULTS AND STATISTICAL EVALUATION

The objective of this section is to present the analytical results of the Base Background Study with respect to inorganics in surface and subsurface soil, and the results of statistical evaluation of this data. The data collected as part of this investigation will provide a basis for evaluating the natural concentrations of inorganics against concentrations associated with site-related contamination. Positive detections are presented in Tables 6-1 through 6-5. Complete data summary tables and frequency of detection tables are presented in Appendices E through I.

6.1 Data Quality

The quality of the data collected as part of this investigation has been assessed for its accuracy and precision with respect to prescribed requirements or specifications. To make these determinations, data quality evaluations were conducted by an independent, third-party, data validator. Data were evaluated in accordance with the criteria established by USEPA guidelines, Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses (USEPA, 1988), specific method requirements in OLM02.1, USEPA Region IV modifications, Level D data requirements, and professional judgement. Validation of the analytical data serves to reduce the inherent uncertainties with its usability.

Analytical data were evaluated to determine the usability of the results as well as contractual compliance relative to deliverables and the previously cited requirements. Data validation also provided an interpretation of the reported quality control results. A minimum of ten percent of all laboratory calculations were verified as part of this validation. In addition, all instrument output (e.g., spectra, chromatograms) for each sample were carefully reviewed. Data quality was evaluated based on, but not limited to the following analyses:

- Data completeness
- Holding times
- Calibrations
- Blanks
- Surrogate recoveries
- Laboratory control samples
- Laboratory and field duplicates
- MS/MSD samples

- Internal standard performance
- Constituent Compound identification
- Constituent Compound quantitation

Based upon the results of this evaluation, some analytical results have been "qualified" with regard to usability. Qualified data are typically flagged with a letter qualifier, representing an associated explanatory note needed to clarify the corresponding analytical results. Data qualified as "J" were retained as estimated. Estimated results within a data set are common and considered to be usable by the USEPA (USEPA, 1989). Data may be qualified as estimated for several reasons including an exceedance of holding times, high or low surrogate recovery, or intrasample variability. In addition, values may be assigned and estimated qualifier if the reported value is below the Contract Required Detection Limit (CRDL) or the Contract Required Quantitation Limit (CRQL). Analytes which were not detected and had inaccurate or imprecise quantitation limits were assigned the "UJ" qualifier. No data obtained during this investigation was rejected by the validator.

6.2 Data Management and Tracking

The management and tracking of samples and subsequent data from the time of field collection to receipt of the validated electronic analytical results is of primary importance for the overall quality of the analytical results. Field samples and their corresponding analytical tests were recorded on the chain-of-custody sheets, included as Appendix D. The chain-of-custody forms were checked against the Final SSP (Baker, 2000) to determine if all designated samples were analyzed for the appropriate parameters. Similarly, the validated information was compared to laboratory information as a final check. In summary, the tracking information was used to identify the following items:

- Identify sample discrepancies between the analysis plan and the field investigation;
- Verify that the laboratory received all samples, and analyzed for the correct parameters;
- Verify that the data validator received a complete data set; and
- Ensure that a complete data set was available for each media of concern prior to entering results into the databases.

6.3 QA/QC Sample Results

As part of the requirements for field quality control under the Naval Facilities Engineering Service Center (NFESC), two types of QA/QC blanks were evaluated: field blanks and equipment rinsate blanks. The analytical results for inorganic parameters for the QA/QC samples are provided in Appendix J.

6.4 Analytical Results

As previously mentioned in Section 5, the surface soil samples were segregated into two data sets based on soil type (fine sands and loams). The following paragraphs compare the analytical findings of these two data sets.

In loamy surface soils (i.e., surface soils containing less than 52 percent sand, 28 to 50 percent silt and 7 to 27 percent clay), the range of background concentrations of aluminum, iron, manganese, selenium, silver and vanadium was higher than those observed in fine sands. Given the fact that the loamy surface soils may contain clay minerals, they are expected to have higher concentrations of aluminum, iron, manganese, and selenium associated with these soils since these metals are prominent constituents of clays. The higher concentrations of silver may be the result of the relatively few detections of this compound within the samples collected as part of the Base Background Study. Silver was only detected in three samples.

Calcium, copper, magnesium, potassium, and zinc concentrations were lower in the loamy surface soils than in the fine sands. It is unknown why copper, magnesium and zinc were lower in soils containing a higher percentage of clay than in soils containing less clay. These analytes have a positive ionic charge and like other metals, are expected to adsorb onto soils containing clay minerals due to the clay's negative ionic charges.

The remaining constituents (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, mercury, nickel, and thallium) were detected at nearly the same concentration in the loamy surface soils as the fine sands. These are the inorganics that have been found during previous investigations to generate human health risk. Therefore, this Background Study will provide a source of comparison for these constituents with respect to overall Base concentrations in soil.

The subsurface soils were divided into three distinctive data sets based on soil composition (i.e., sand, silt and clay). On average, the analytical results for the inorganics detected in the subsurface sands were less than either the silts or the clays, and the clays typically contained the highest concentrations. This ratio is expected because clayey soils typically contain a negative charge and attract positively charged ions. Most metal ions when free in soil are positively charged.

The clays contained higher concentrations of aluminum, antimony, arsenic, barium, beryllium, chromium, cobalt, copper, lead, magnesium, manganese, nickel, potassium, silver, vanadium, and zinc. Calcium, iron, mercury, and selenium were detected at higher concentrations in the silts than in either the clays or sands. Cadmium, sodium and thallium were not detected in any of the subsurface soil samples collected as part of this investigation.

6.5 Statistical Evaluation of Background Data

Many statistical procedures were developed for data sets presumed to have been drawn from a population having a symmetric, bell-shaped, Gaussian or "normal" distribution. It is often the case, however, that environmental datasets are asymmetrical and skewed to the right, or in other words, with a "long tail towards high concentrations". A right-skewed distribution can be transformed to become approximately Gaussian, by using a logarithmic transformation, so that the procedures for normally distributed data can be applied to the transformed data. If the distribution of a data set was not apparent (i.e., normal or lognormal), statistical tests were performed using Statistica® to identify the most appropriate distribution for the data sets.

The W-test was performed for all data sets to aid in the determination of the underlying distribution. The W-test is considered to be an effective method for determining whether a data set can be described as "normally" distributed. Conducting this test on the logarithms of the data is also an effective method of determining whether a data set can be described as being "lognormally" distributed. The W-test evaluates the null hypothesis (i.e., the data set is described by a normal/lognormal distribution versus the data set is not described by a normal/lognormal distribution) and is valid for data sets containing up to fifty samples.

Arithmetic mean, rather than the geometric mean, was calculated for all data sets in the Background Study. The normal and lognormal standard deviations were also calculated for all data sets. The standard deviation is the distance from the mean to either of the two inflection

points of the distribution curve and is used as a descriptive measure of the spread of the values comprising the population. Means and standard deviation were used to calculate the normal and lognormal upper 95 percent confidence limits for the data sets.

The 95 percent upper confidence limit of a mean is defined as a value that, when calculated repeatedly for randomly drawn subsets of a data set, equals or exceeds the true mean 95 percent of the time. Statistical confidence limits are used as a tool for addressing uncertainties of a distribution average. The 95 percent upper confidence limit accounts for uncertainties related to limited sampling data obtained from sites.

Results of the W-Test were inconclusive as to the statistical distribution of the data in some cases. Therefore, Statistica® was used to aid in this determination. Statistica® is a comprehensive, integrated, statistical data analysis, computer program capable of basic and advanced analytic procedures capable of fitting analytical data to known distributions and rigorously evaluating means and standard deviations.

The data generated by Statistica® was then analyzed using linear regression and scatter plots based on a 95% confidence interval and correlation coefficients. Section 6.7 details these analyses.

Sometimes a set of data will have one or more items with unusually large or unusually small values. Extreme values such as these are called outliers. Experienced statisticians take steps to identify outliers and then review each one carefully. An outlier may be an item for which the data has been incorrectly recorded, an item that was incorrectly added to the data set, or it may be an unusual item that has been recorded correctly and does belong in the data set. In the first two cases, the outlier should be removed from the data set and analysis of the data set should be rerun. In the case where the outlier has been recorded correctly and does belong in the data set, the outlier should remain.

In general, the presence of one or more outliers in a data set tends to increase the value of the standard error of the estimate. The procedures for identifying outliers and influential observations provide warnings about the potential effects some observations may have on the regression results. Each outlier and influential observation warrants careful examination. If data errors are found, the errors can be corrected and the regression analysis repeated. Outliers and influential observations should not be removed from the data set unless clear evidence shows that

they are not based on elements of the population being studies and should not have been included in the original data set.

For the purposes of this project, it is not known if samples that contain inorganic concentrations that are detected as outliers are truly background or a result of contamination, therefore all outliers will be removed from the data sets. However, if additional background samples are collected and added to the data set, then these samples should be included as part of the data and the outliers test rerun.

The results of the statistical analyses are presented in Appendix E through K and summarized on Tables 6-6 through 6-10. The summary tables present the constituent, the type of distribution, frequency of detection, range of detection, arithmatic mean (average concentration), two times the average concentration, standard deviation, two times the average deviation, log arithmatic mean, log standard deviation, and two times the log standard deviation.

6.6 Scatter Plots and Linear Regression Analysis

The background data generated at the Base was analyzed using scatter plots and liner regression. A scatter plot is a standard method that is commonly used as a simple screening tool to determine if there is a general relationship between two values (x and y), where a particular value of x is paired with a particular value of y. The general relationship determined using the scatter plot might further be analyzed using a regression analysis. Primarily, a regression analysis is used to determine the relationship between given x and y values and if the relationship is significant. The significance is determined by evaluating the strength of the correlation between the variables (x, y). Correlation is represented using the coefficient of determination (r²). R² values range from 0.0, representing little to no correlation, to 1.0 representing perfect correlation. Four purposes of examining and comparing the background data in this report, even weak correlations provide useful information for comparing data.

For the purposes of this study, the linear regression was used to determine the relationship between different metal concentrations, establish background concentrations, and to present the distribution of background data. The regression lines in conjunction with the scatter plots are useful tools in determining if the analytical results from site samples are within the range of background concentrations. The regression line graphically represents predicted average background of metal concentrations across the base and the scatter plots represent the distribution

of the background data. These plots can be used regardless of whether there is a weak or strong correlation between the comparison metals. They can also be used to determine whether previous and future investigation data falls within the existing distribution of background. This can be done with any data set (big or small) by plotting the data set in the background scatter plat. Data points that fall within the graphical distribution of background are obviously considered background. Any data points that do not fall within this distribution of background will need to be further assessed to determine whether the constituent is a contaminant of potential concern (COPC). Examples of these scatter plots can be found in Appendices E through K.

Example data points were used in the Base Background Surface Soils-Fine Sand scatter plot to show how investigation data may be assessed graphically. If any given data point, as in Sample 3, falls above the background distribution on the graph, it can be said that the aluminum concentration detected in Sample 3 is above background. If any given point, as in Sample 2, falls below the background distribution on the graphics, the same can be said for chromium. Some sample points may be found just outside the distribution of background as in Sample 1. These sample points may not be a concern depending on the actual concentrations and their relationship to the screening criteria.

These scatter plots and liner regression graphs developed in this report will be a useful tool in assessing future investigations at MCB, Camp Lejeune. By plotting future investigation data with the existing background scatter plots, it will be simple to determine what data points or samples fall within Base background concentrations. This report will be a living document and will grow as new background data is collected in future investigations. These scatter plots will be further developed and this tool will be fine-tuned to better understand background concentrations at the Base.

7.0 CONCLUSIONS AND RECOMMENDATIONS

This section summarizes the Base Background Study findings and discusses generalized conclusions from the data collected at MCB, Camp Lejeune. In addition, this section provides recommendations for how the information in this report should be used.

In general, inorganics were detected at similar concentrations in the surface and subsurface samples collected as part of this investigation. There are differences between the data sets, but these differences are primarily based upon the lithology of the soils in each soil horizon. When the soils are separated into data sets based on their lithology, it becomes apparent that the majority of the constituents are more prevalent in the fine-grained soils (clay and silts) than in coarse-grained soils (sands). This was an expected finding since metals are known to attend onto clays through the formation of ionic bonds.

The concentrations of aluminum, calcium, magnesium, and iron exceed those for all other constituents analyzed during this investigation. This is not surprising because relatively high concentrations of these analytes have often been detected during previous investigations conducted at the Base. The relatively few detections of cadmium, silver, and thallium indicates that these analytes should be carefully evaluated as to their origin in any investigation. These analytes may be anthropogenic in origin, but do not appear to be common constituents in site soils.

The linear regression and scatter plots developed in this report will be a useful tool in assessing future investigations at MCB, Camp Lejeune. By plotting future investigation data with the existing background data in regression and scatter plots, it will be simple to determine which constituents should be considered background. This report will be a living document and will grow with new background data as it is collected in future investigations. New and better regression scatter plots will be developed and this tool will be fine-tuned to better understand background concentrations at the Base.

The following recommendations are based on the findings of this background investigation and should be considered for future environmental investigations at MCB, Camp Lejeune:

 Surface and subsurface soils must be classified appropriately by a trained professional to accurately determine their true composition.

- Sample results must be compared to the proper background data set based on soil classification.
- Inorganics detected in soils at MCB, Camp Lejeune during future investigations should
 be compared to the inorganic data presented in this report before conducting risk
 assessments. This will help determine if the concentrations of inorganics detected at a
 particular site are within the range of background or whether the concentration may be
 the result of site-related activities.
- If the sample can not be classified regarding its soil type, then comparison to the combined data set may be an alternative. These tables would be helpful in the instance where soils were not described during a field program; however, caution should be exercised when comparing clayey soils to the combined data set since it may falsely indicate that the inorganics within the samples are above background concentrations. The combining of sample results from sands, silts and clays into this combined data set will dilute the range of inorganics naturally occurring in clays at the Base.

8.0 REFERENCES

Baker Environmental, Inc. (Baker). 2000. <u>Final Sample Strategy Plan, Background Study,</u> Marine Corps Base Camp Lejeune, North Carolina. July 2000.

Baker Environmental, Inc. (Baker). 1997. <u>Solid Waste Management Unit (SWMUs)</u>

<u>Confirmatory Sampling Project Plans, Marine Corps Base Camp Lejeune, North Carolina.</u>

August 1997

CAMA. North Carolina Coastal Management Act of 1974. (1973, c. 1284, s; 1975, c. 452, s; c. 932, s. 2.1). 1974.

Cardinell, Alex P. et al, 1993. <u>Hydrogeologic Framework of U.S. Marine Corps Base at Camp Lejeune, Carolina</u>. U.S. Geological Survey, Water-Resources Investigations Report 93-4049.

Department of the Navy (DoN). 1988. <u>Master Plan, Camp Lejeune Complex, North Carolina</u>. COMBAVFACENGCOM, April 8, 1988.

Environmental and Safety Designs, Inc. (EnSafe). 1996. <u>RCRA Facility Assessment Report for Marine Corps Base Camp Lejeune, North Carolina</u>. Final. Prepared for the Naval Facilities Engineering Command, Atlantic Division, Norfolk, Virginia. July 25, 1996.

ESE, 1990. <u>Final Site Summary Report, MCB, Camp Lejeune</u>. ESE Project No. 49-02036, September 1990.

Geophex, 1991. Wellhead Management Program Engineering Study 91-36. Prepared for Officer in Charge of Construction, MCB, Camp Lejeune, North Carolina. January, 1991.

Greenhorne and O'Mara, Inc., 1992. <u>Preliminary Draft Report Wellhead Monitoring Study</u>, <u>Engineering Study 92-34.</u> Prepared for Department of the Navy, Civil Branch. December 1992.

Harned, Douglas A., et al, 1989. <u>Assessment of Hydrologic and Hydrogeologic Data at Camp Lejeune Marine Corps Base. North Carolina</u>. U.S. Geological Survey, Water-Resources Investigations Report 89-4096.

LeBlond, Richard, Fussel, John, and Alvin Braswell. 1994. "Inventory of the Rare Species, Natural Communities, and Critical Areas of the Camp Lejeune Marine Corps Base, North Carolina." For the North Carolina Natural Heritage Program, Division of Parks and Recreation, Department of Environment, Health, and Natural Resources. February 1994.

LeBlond, Richard. 1991. "Critical Species List-Camp Lejeune Endangered Species and Special-Interest Communities Survey." Principal Investigator.

MCB, Camp Lejeune Federal Facility Agreement (FFA). December 6, 1989.

North Carolina Department of Environment, Health, and Natural Resources (NC DENR). 1993. Classifications and Water Quality Standards Applicable to Surface Waters of North Carolina. Administrative Code 15A NCAC 2 B. .0200. Division of Environmental Management. February 1993.

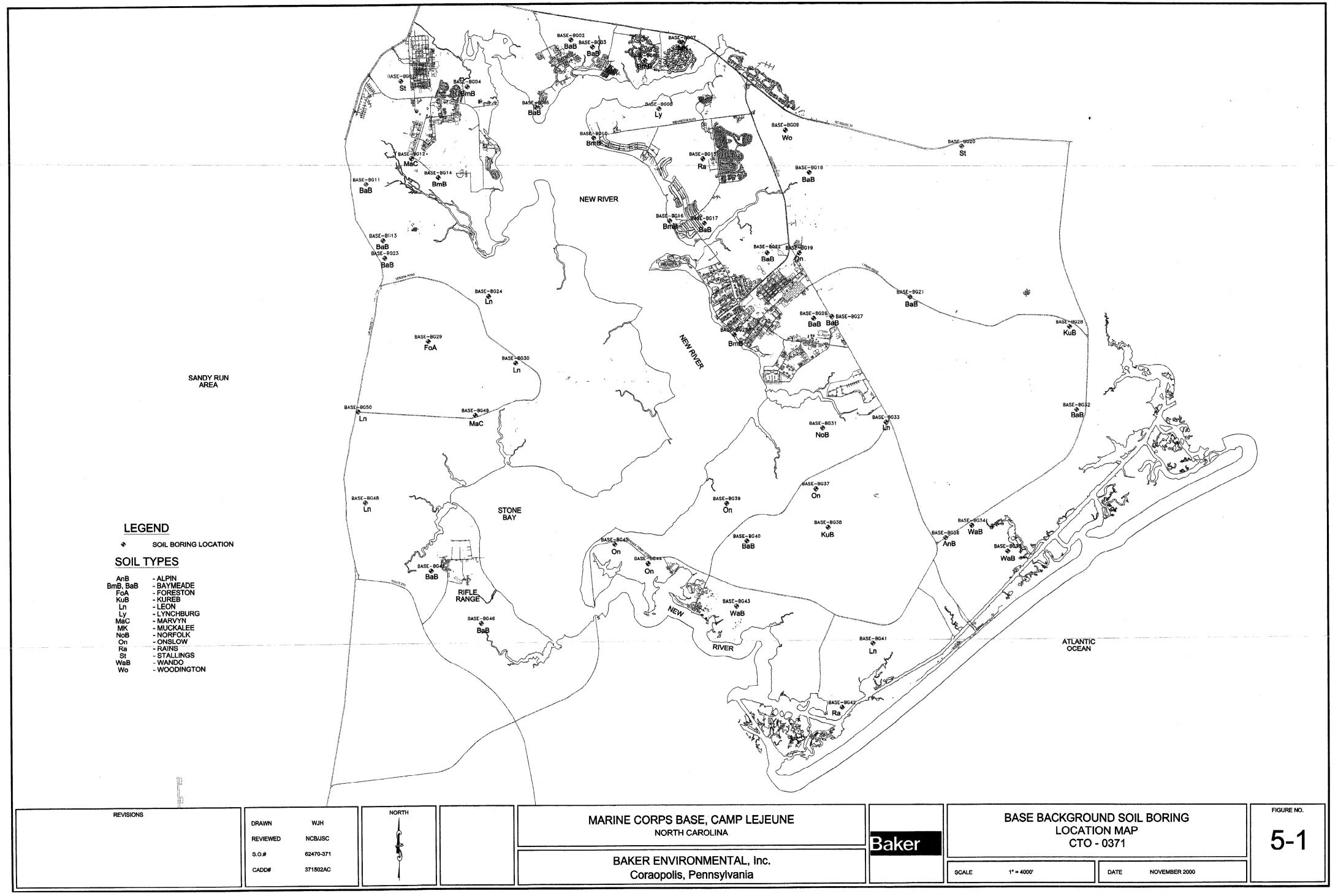
North Carolina Department of Environment, Health, and Natural Resources (NC DENR). <u>Interim Guidance for Wetlands Protection</u>. Division of Environment, Water Quality. May 1992.

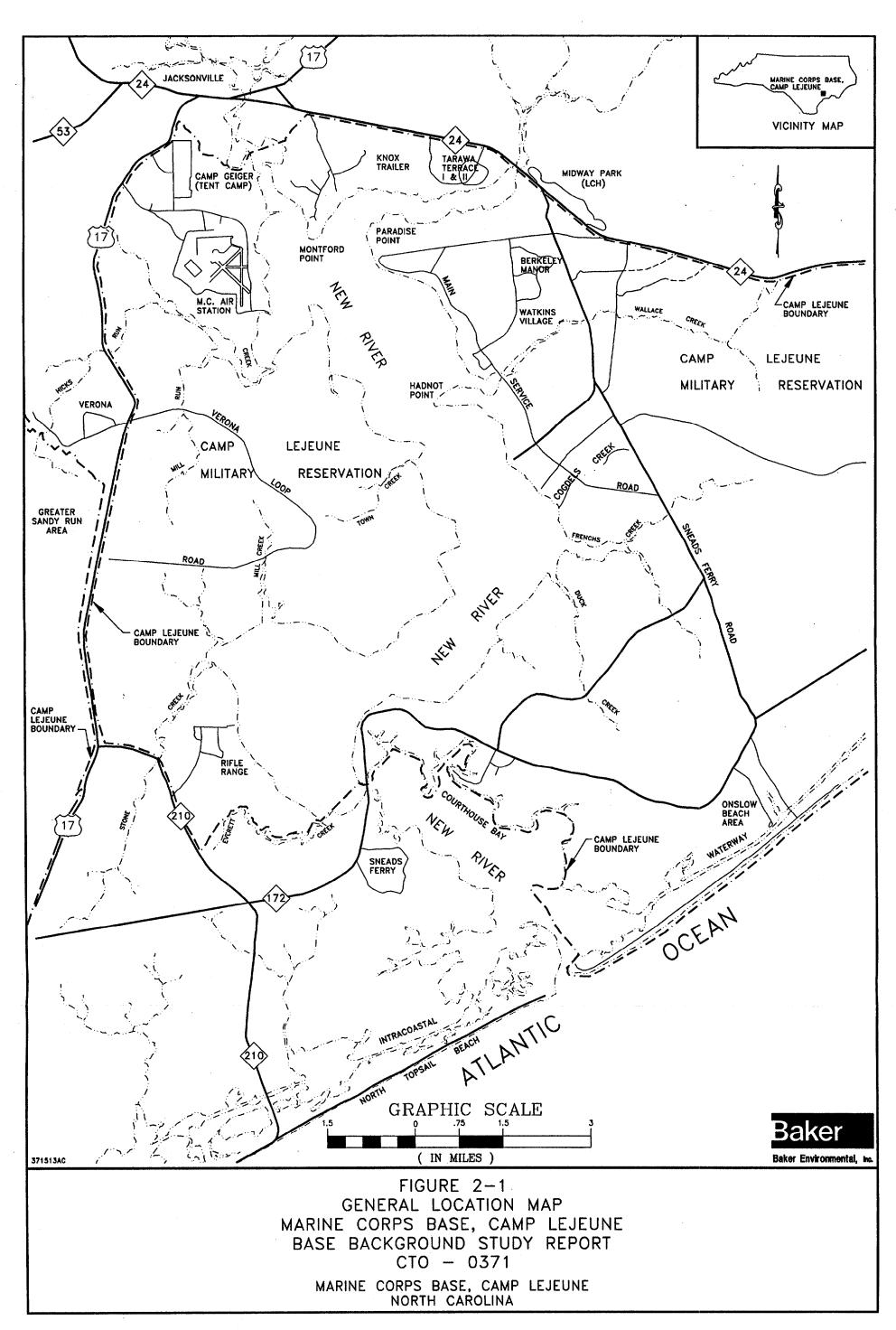
North Carolina Wildlife Resources Commission (NCWRC). 1992. 1992-1993 Hunting and Fishing Maps for North Carolina Game Lands. June 1992.

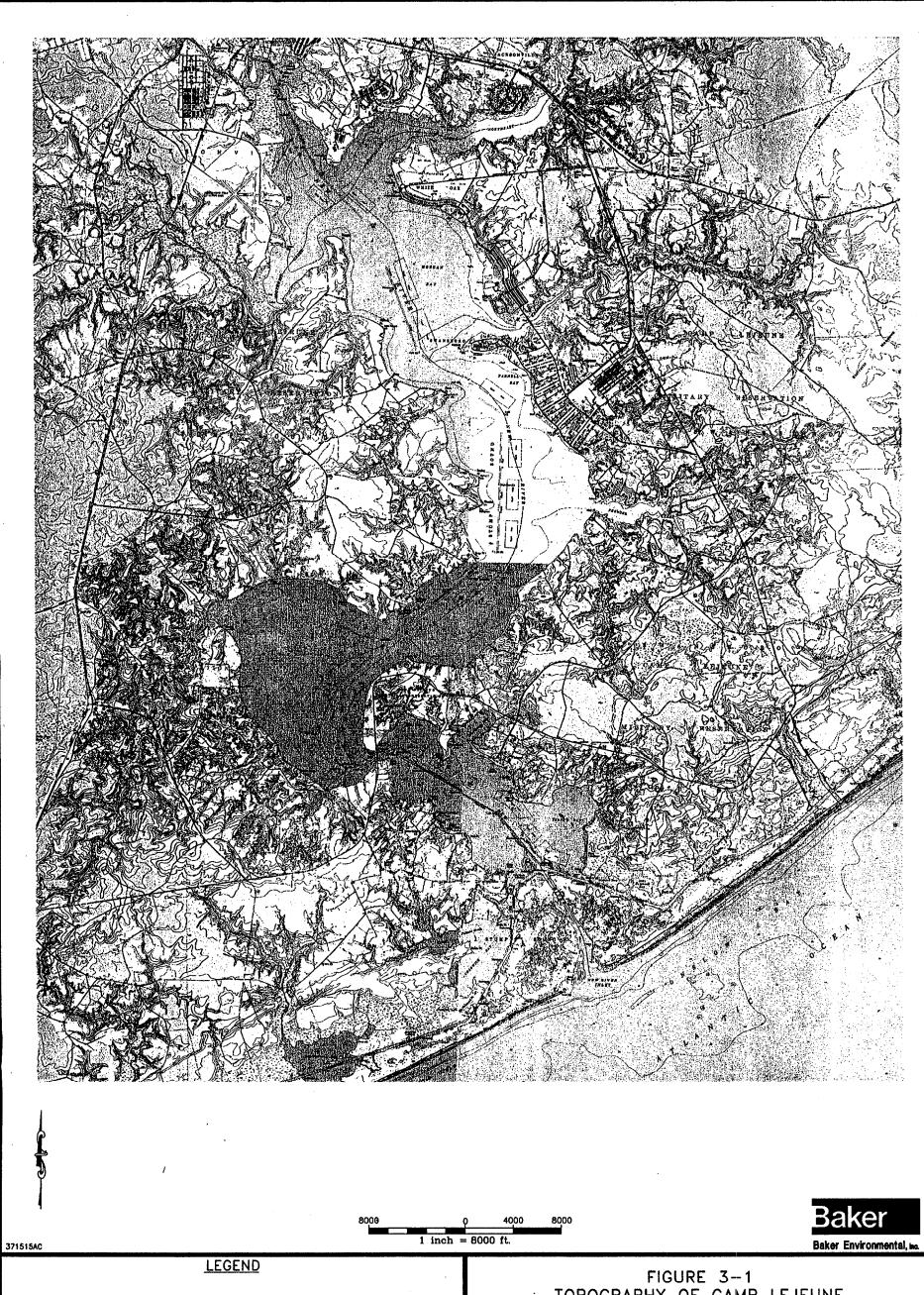
Soil Conservation Service. 1984. Soil Survey for MCB, Camp Lejeune, North Carolina.

United States Department of the Interior (USDI). 1982. <u>National Wetland Inventory Map. Camp Lejeune</u>, North Carolina. Fish and Wildlife Service. March 1982.

United States Department of the Interior (USDI). 1993. Correspondence and maps showing units within the Coastal Barriers Resource System. Fish and Wildlife Service.

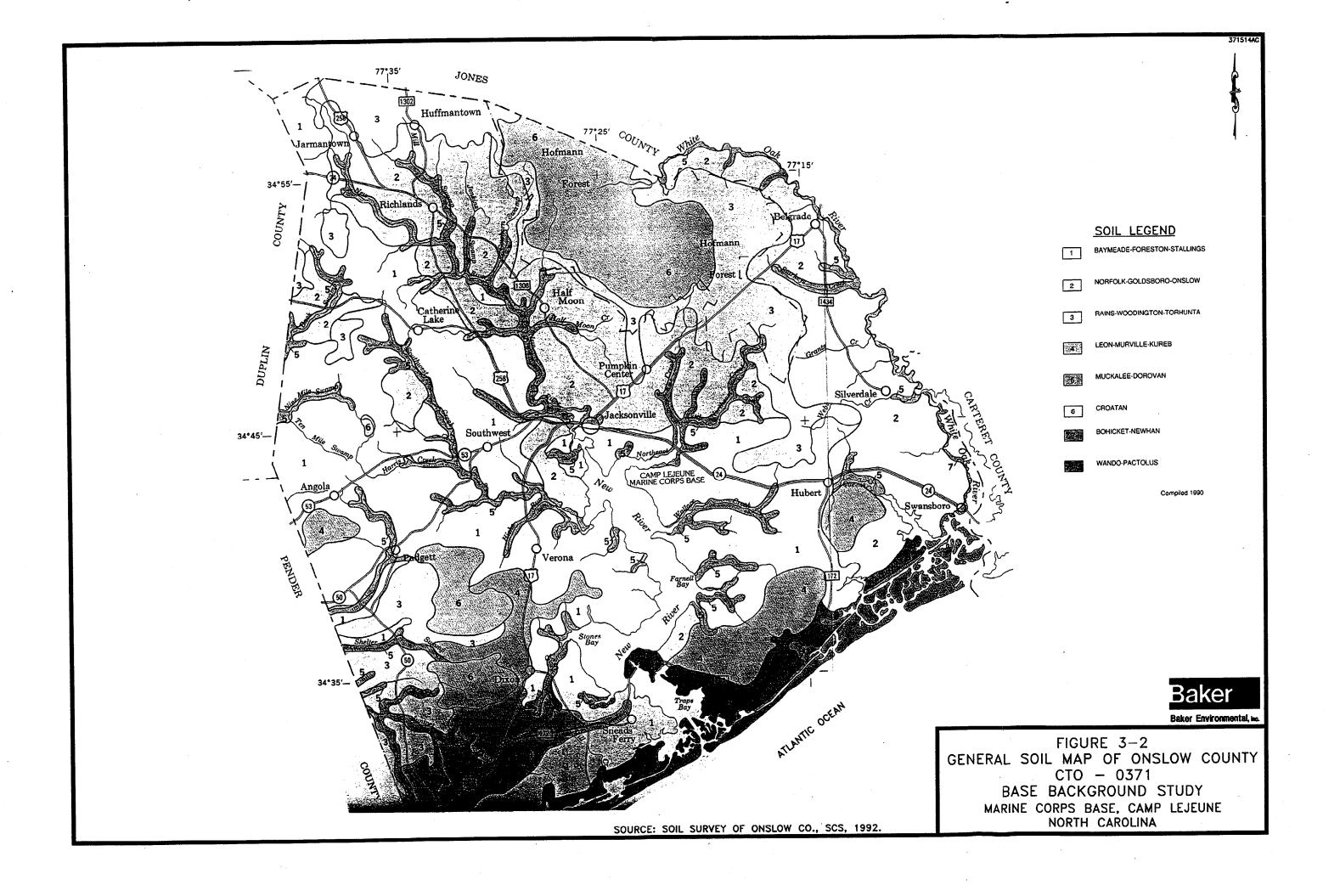

United States Marine Corps, MCB, Camp Lejeune (USMC). 1987. <u>Multiple-Use Natural Resources Management Plan</u>. Fish and Wildlife Division, Environmental Management Department, Marine Corps Base, Camp Lejeune, North Carolina.


United States Environmental Protection Agency. 1988. <u>Laboratory Guidelines for Evaluating Inorganics Analysis</u>. Prepared for: Hazardous Site Evaluation Division, U.S. Environmental Protection Agency. Compiled by Ruth Bleyer. Prepared by: The USEPA Data Review work Group. July 1988.


USEPA. 1989. United States Environmental Protection Agency. <u>Risk Assessment Guidance for Superfund Volume I. Human Health Evaluation Manual (Part A) Interim Final</u>. Office of Solid Waste and Emergency Response, Washington, D.C. EPA/540/1-89-002. December 1989.

Water and Air Research, Inc (WAR). 1983. <u>Initial Assessment Study of Marine Corps Base Camp Lejeune</u>. North Carolina. Prepared for Naval Energy and Environmental Support Activity.

FIGURES



SOURCE: U.S.G.S. QUADRANGLES JACKSONVILLE SOUTH, CAMP LEJEUNE, SNEADS FERRY AND NEW RIVER INLET.

FIGURE 3-1
TOPOGRAPHY OF CAMP LEJEUNE
CTO - 0371
BASE BACKGROUND STUDY

MARINE CORPS BASE, CAMP LEJEUNE NORTH CAROLINA

TABLES

TABLE 2-1

LAND UTILIZATION: DEVELOPED AREAS LAND USE⁽¹⁾ BASE BACKGROUND STUDY, CTO-0371 MCB, CAMP LEJEUNE, NORTH CAROLINA

Geographic Area	Oper.	Training (Instruc.)	Maint.	Supply/ Storage	Medical	Admin.	Family Housing	Troop Housing	СМ	СО	Recreat.	Utility	Total
Hadnot Point	31 (2.9)	15 (1.4)	154 (14.3)	157 (14.4)	10 (0.9)	122 (11.3)	22 (2.0)	196 (18.1)	115 (10.7)	36 (3.3)	182 (16.9)	40 (3.7)	1,080 (100)
Paradise Point	(0)		3 (0.4)	1 (0)			343 (34)	19 (1.9)	31 (3.1)		610 (60.4)	2 (0.2)	1,010 (100)
Berkeley Manor/ Watkins Village							406 (80)		41 (8.1)	1 (0.2)	57 (11.2)	2 (0.5)	507 (100)
Midway Park		1 (0.4)		2 (0.7)		2 (0.7)	248 (92.2)		8 (3.0)	3 (1.1)	4 (1.5)	1 (0.4)	269 (100)
Tarawa Terrace I and II			3 (0.5)			(0.3)	428 (77.4)		55 (9.9)	11 (2.0)	47 (8.5)	8 (1.4)	553 (100)
Knox Trailer							57 (100)						57 (100)
French Creek	8 (1.4)	1 (0.2)	74 (12.7)	266 (45.6)	3 (0.5)	7 (1.2)		122 (20.9)	22 (3.8)	6 (1.0)	74 (12.7)		583 (100)
Courthouse Bay		73 (28.6)	28 (10.9)	14 (5.5)		12 (4.7)	12 (4.7)	43 (16.9)	15 (5.9)	4 (1.6)	43 (16.9)	11 (4.3)	255 (100)
Onslow Beach	6 (9.8)	1 (1.6)	3 (4.8)	2 (3.2)	l (1.6)	2 (3.2)		2 (3.2)	12 (19.3)		25 (40.3)	8 (13.0)	62 (100)
Rifle Range		1 (1.3)	1 (1.3)	7 (8.8)	1 (1.3)	5 (6.3)	7 (8.8)	30 (37.5)	5 (6.3)	1 (1.3)	9 (11.3)	13 (16.3)	80 (100)
Camp Geiger	4 (1.9)	15 (6.9)	19 (8.8)	50 (23.1)		23 (10.6)		54 (25.0)	27 (12.5)	2 (1.0)	16 (7.4)	6 (2.8)	216 (100)
Montford Point	6 (2.6)	48 (20.5)	2 (0.9)	4 (1.7)	2 (0.9)	9 (3.9)		82 (35.2)	20 (8.6)	1 (0.4)	49 (21.0)	10 (4.3)	233 (100)
Base-Wide Misc.	l (0.8)			87 (68.0)		3 (2.3)			19 (14.8)			. 18 (14.1)	128 (100)
TOTAL	57 (1.1)	155 (3.1)	287 (5.7)	590 (11.7)	17 (0.38)	186 (3.7)	1,523 (30.2)	548 (10.8)	370 (7.4)	65 (1.3)	1,116 (22.2)	119 (2.4)	5,033 (100)

Note:

⁽¹⁾ Upper number is acres, lower number is overall percent.

TABLE 3-1

CLIMATIC DATA SUMMARY MARINE CORPS AIR STATION, NEW RIVER MCB, CAMP LEJEUNE, NORTH CAROLINA BASE BACKGROUND REPORT, CTO-0371

		Precipitation (Inches)		D.I.		Temperature	Mean Number of Days With					
	(thenes)		Relative Humidity	(Fahrenheit)			Precipitation		Temperature			
	Maximum	Minimum	Average	(Percent)	Maximum	Minimum	Average	>=0.01"	>=0.5"	>=90F	>-75F	<=32F
January	7.5	1.4	4.0	79	54	34	44	11	2	0	1	16
February	9.1	.9	3.9	78	57	36	47	10	3	0	2	11
March	8	.8	3.9	80	64	43	54	10	3	*	5	5
April	8.8	.5	3.1	79	73	51	62	8	2	1	13	*
May	8.4	.6	4.0	83	80	60	70	10	3	2	25	0
June	11.8	2.2	5.2	84	86	67	77	10	4	7	29	0
July	14.3	4.0	7.7	86	89	72	80	14	5	13	31	0
August	12.6	1.7	6.2	89	88	71	80	12	4	11	31	0
September	12.8	.8	4.6	89	83	66	75	9	3	4	27	0
October	8.9	.6	2.9	86	75	54	65	7	2	*	17	*
November	6.7	.6	3.2	83	67	45	56	8	2	0	7	3
December	6.6	.4	3.7	81	58	37	48	9	2	0	2	12
Annual	65.9	38.2	52.4	83	73	53	63	118	35	39	189	48

Notes:

* = Mean no. of days less than 0.5 days Source: Naval Oceanography Command Detachment, Asheville, North Carolina. Measurements obtained from January 1955 to December 1990.

TABLE 3-2

GEOLOGIC AND HYDROGEOLOGIC UNITS IN THE COASTAL PLAIN OF NORTH CAROLINA **BASE BACKGROUND REPORT, CTO-0371** MCB, CAMP LEJEUNE, NORTH CAROLINA

	GEOLOGIC UNIT	S	HYDROGEOLOGIC UNITS
System	Series	Formation	Aquifer and Confining Unit
Quaternary	Holocene/Pleistocene	Undifferentiated	Surgical Aquifer
	Pliocene	Yorktown Formation (1)	Yorktown Confining Unit Yorktown Aquifer
Tertiary	Miocene	Eastover Formation (1) Pungo River Formation (1)	Pungo River Confining Unit Pungo River Aquifier
	Oligocene	Belgrade Formation (2) River Bend Formation	Castle Hayne Confining Unit Castle Hayne Aquifier
	Eocene	Castle Hayne Formation	Beaufort Confining Unit (3)
	Palocene	Beaufort Formation	Beaufort Aquifer
		Peedee Formation	Peedee Confining Unit Peedee Aquifer
Cretaceous	Upper Cretaceous	Black Creek and Middendorf Formations	Black Creek Confining Unit Black Creek Aquifer
		Cape Fear Formation	Upper Cape Fear Confining Unit Upper Cape Fear Aquifer Lower Cape Fear Confining Unit Lower Cape Fear Aquifer
	Lower Cretaceous (1)	Unnamed Deposits (1)	Lower Cretaceous Confining Unit Lower Cretaceous Aquifier (1)
Pre-Cretaceo	ous Basement Rocks		

Source: Cardinell, et al., 1993

Geologic and hydrologic units not present beneath Camp Lejeune.
Constitutes part of the surficial aquifer and Castle Hayne confining unit in the study area.
Estimated to be confined to deposits of Paleocene age in the study area.

TABLE 3-3

HYDRAULIC PROPERTY ESTIMATES OF THE CASTLE HAYNE AQUIFER AND CONFINING UNIT BASE BACKGROUND REPORT, CTO-0371 MCB, CAMP LEJEUNE, NORTH CAROLINA

Hydraulic Properties	USGS Phase I Study ⁽¹⁾	USGS Aquifer Test ⁽²⁾	ESE, Inc. (3)	NC DENR Aquifer Test ⁽⁴⁾	RASA Estimate ⁽⁵⁾
Aquifer transmissivity (cubic foot per day per square foot times foot of aquifer thickness)	4,300 to 24,500 average 9,500	1,140 to 1,325	820 to 1,740 average 1,280	900	10,140 to 26,000
Aquifer hydraulic conductivity (foot per day)	14 to 82 average 35	20 to 60	. 	18 to 91 average 54	45 to 80 average 65
Aquifer storage coefficient (dimensionless)		2.0 x 10 ⁻⁴ to 2.2 x 10 ⁻⁴	5.0 x 10 ⁻⁴ to 1.0 x 10 ⁻³ average 8.0 x 10 ⁻⁴	1.9 x 10 ⁻³	
Confining-unit vertical hydraulic conductivity (foot per day)		3.0 x 10 ⁻² to 4.1 x 10 ⁻¹	1.4 x 10 ⁻³ to 5.1 x 10 ⁻² average 3.5 x 10 ⁻³		

Notes:

Source: Cardinell, et al., 1993.

⁽¹⁾ Analysis of specific capacity data from Harned and others (1989).

⁽²⁾ Aquifer test at well HP-708.

⁽³⁾ Aquifer test at Hadnot Point well HP-462 from Environmental Sciences and Engineering, Inc. (1988).

⁽⁴⁾ Unpublished aquifer test data at well X24s2x, from NC DENR well records (1985).

⁽⁵⁾ Transmissivities based on range of aquifer thickness and average hydraulic conductivity from Winner and Coble (1989).

TABLE 3-4

PROTECTED SPECIES MCB, CAMP LEJEUNE, NORTH CAROLINA BASE BACKGROUND REPORT, CTO-0371

Species	Protected Classification
Animals:	
American alligator (Alligator mississippienis)	SC
Bachmans sparrow (Aimophilia aestivalis)	FCan, SC
Green (Atlantic) turtle (Chelonia m. mydas)	T(f), T(s)
Loggerhead turtle (Caretta caretta)	T(f), T(s)
Peregrine falcon (Falco peregrinus)	E(f), E(s)
Piping plover (Charadrius melodus)	T(f), T(s)
Red-cockaded woodpecker (<u>Picoides</u> <u>borealis</u>)	E(f), E(s)
Southern Hognose Snake (<u>Heterodon simus</u>)	FCan, SR
Diamondback Terrapin (Malaclemys terrapin)	FCan, SC
Carolina Gopher Frog (Rana capito capito)	FCan, SC
Cooper's Hawk (Accipiter cooperii)	SC
Eastern Diamondback Rattlesnake (Crotalus adamanteus)	SR
Eastern Coral Snake (Micrurus fulvius)	SR
Pigmy Rattlesnake (<u>Sistrurus miliarius</u>)	SR
Black Bear (<u>Ursus</u> <u>americanus</u>)	SR
Plants:	
Rough-leaf loosestrife (Lysimachia asperulifolia)	E(f), E(s)
Seabeach Amaranth (Amaranthus pumilus)	T(f), T(s)
Chapman's Sedge (<u>Carex</u> <u>chapmanii</u>)	FCan
Hirst's Witchgrass (<u>Dichanthelium</u> sp.)	FCan
Pondspice (<u>Litsea aestivalis</u>)	FCan
Boykin's Lobelia (Lobelia boykinii)	FCan
Loose Watermilfoil (Myriophyllum laxum)	FCan,T(s)
Awned Meadowbeauty (Rhexia aristosa)	FCan,T(s)
Carolina Goldenrod (Solidago pulchra)	FCan, E(s)
Carolina Asphodel (Tofieldia glabra)	FCan
Venus Flytrap (<u>Dionaea muscipula</u>)	FCan
Flaxleaf Gerardia (Agalinis linifolia)	SR
Pinebarrens Goober Grass (Amphicarpum purshii)	SR
Longleaf Three-awn (Aristida palustris)	SR
Pinebarrens Sandreed (<u>Calamovilfa</u> <u>brevipilis</u>)	E(s)
Warty Sedge (<u>Carex</u> <u>verrucosa</u>)	SR
Smooth Sawgrass (<u>Cladium mariscoides</u>)	SR
Leconte's Flatsedge (Cyperus lecontei)	SR

TABLE 3-4 (Continued)

PROTECTED SPECIES MCB, CAMP LEJEUNE, NORTH CAROLINA **BASE BACKGROUND REPORT, CTO-0371**

Species	Protected Classification
Erectleaf Witchgrass (Dichanthelium erectifolium)	SR
Horsetail Spikerush (Eleocharis equisetoides)	SR
Sand Spikerush (Eleocharis montevidensis)	SR
Flaxleaf Seedbox (<u>Ludwigia</u> <u>linifolia</u>)	SR
Torrey's Muhley (Muhlenbergia torreyana)	E(s)
Southeastern Panic Grass (Panicum tenerum)	SR
Spoonflower (Peltandra sagittifolia)	SR
Shadow-witch (Ponthieva racemosa)	SR
West Indies Meadowbeauty (Rhexia cubensis)	SR
Pale Beakrush (Rhynchospora pallida)	SR
Longbeak Baldsedge (Rhynchospora scirpoides)	SR
Tracy's Beakrush (Rhynchospora tracyi)	SR
Canby's Bulrush (Scirpus etuberculatus)	SR
Slender Nutrush (Scleria minor)	SR
Lejeune Goldenrod (Solidago sp.)	SR
Dwarf Bladderwort (<u>Utricularia</u> <u>olivacea</u>)	T(s)
Elliott's Yellow-eyed Grass (Xyris elliottii)	SR
Carolina Dropseed (Sporobolus sp.)	T(s)

Legend:

E(f) = Federal Endangered

T(f) = Federal Threatened

Fcan = Candidate for Federal Listing

E(s) = State Endangered T(s) = State Threatened

SC = State Special Concern SR = State Rare

Source: LeBlond, 1994

TABLE 6-1 SUMMARY OF POSITIVELY DETECTED INORGANICS IN FINE SAND SURFACE SOILS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

SAMPLE ID	BASE-BG02-00	BASE-BG03-00	BASE-BG04-00	BASE-BG05-00	BASE-BG06-00	BASE-BG09-00	BASE-BG10-00	BASE-BG11-00
SAMPLE DATE	7/13/00	7/13/00	7/11/00	7/13/00	7/13/00	7/14/00	7/13/00	7/11/00
METALS (mg/kg)								
Aluminum	1380	2090	8530	2320	3140	190	5390	2540
Antimony	ND	0.27 J	ND	ND	ND	0.26 J	ND	ND
Arsenic	0.73	ND	0.42 J	0.3 J	ND	ND	0.64 J	0.83 J
Barium	6	6.3	14	9.5	6.7	1.6	12	14.1
Beryllium	ND	0.042 J	ND	0.094 J	ND	0.02 J	0.07 J	0.11 J
Cadmium	ND	0.11 J						
Calcium	52.7 J	87.6 J	170	17400	152	ND	592	105000
Chromium	0.85	1.9	9.4	2	3	0.51 J	6.4	9.7
Cobalt	0.19 Ј	ND	0.4 Ј	0.12 J	0.14 J	ND	0.34 J	0.3 J
Copper	0.73	0.88	1.3	ND	0.83	2.1	1.5	2.9
Iron	365	971	5000	1040	623	126	3830	2420
Lead	3.1 J	3 Ј	7.4 Ј	4 Ј	4.6 J	2.8	5.4 J	38.5 J
Magnesium	27.9 Ј	47.4 J	274	333	65.3 Ј	ND	146	1610
Manganese	17	2.1 Ј	5.1	9.5 J	2.1	ND	6.4 J	25.9
Mercury	ND	0.048	0.038	ND	ND	ND	ND	0.069
Nickel	0.84	0.64	1.6	0.64	0.91	ND	1.4	1.6
Potassium	22.3 J	34.4 Ј	169 Ј	45.8 J	73.8 J	ND	88.4 J	263 J
Selenium	ND	ND	0.36 J	ND	0.25 J	ND	ND	0.63 J
Silver	ND							
Sodium	ND	307						
Thallium	ND							
Vanadium	1.2 J	2.8	13.4	ND	3.4	1.2 Ј	9.8	7.7
Zinc	ND	ND	3.8	2.7	ND	1.5 J	3.4	18.4

ND - Not Detected

mg/kg = Milligrams per Kilogram J - Resultant concentration is estimated

TABLE 6-1
SUMMARY OF POSITIVELY DETECTED INORGANICS IN FINE SAND SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG17-00	BASE-BG18-00	BASE-BG20-00	BASE-BG21-00	BASE-BG22-00	BASE-BG23-00	BASE-BG24-00	BASE-BG25-00
SAMPLE DATE	7/13/00	7/14/00	7/16/00	7/15/00	7/14/00	7/11/00	7/13/00	7/15/00
METALS (mg/kg)								
Aluminum	2140	894	2520 Ј	53.9	4270 J	2660	123	1460
Antimony	ND	ND	0.34 Ј	ND	0.25 J	0.9 Ј	ND	0.31 Ј
Arsenic	ND	ND	ND	ND	0.85 J	ND	ND	0.46 Ј
Barium	6.1	2.4	9.2	2.3	9.2	9.1	3.6	5.7
Beryllium	0.047 J	ND	0.061 J	0.016 J	0.038 J	ND	ND	0.082 J
Cadmium	ND							
Calcium	49.4 J	44.2 J	48.6 J	ND	171	3840	327	112
Chromium	1.7	0.98	3.5	ND	4.4	3.3 J	0.42 J	1.4
Cobalt	ND	ND	0.17 J	ND	0.19 J	0.2 J	ND	0.089 J
Copper	1.2	1.1	ND	ND	1.2	18.2	4.1	ND
Iron	858	751	707 J	44	1890 J	1440	106	884
Lead	8 J	4 Ј	4.3 J	0.45	8.7 J	32.5 J	3 Ј	7
Magnesium	48.7 J	18.8 J	75.2 Ј	ND	95.9 J	106	56.2	88.6 J
Manganese	8.7 Ј	2.6 Ј	1.6	3.3 J	5.5	18.7	3.1	2.3 Ј
Mercury	ND	ND	0.032 J	ND	0.04	0.028 J	ND	ND
Nickel	0.48 J	0.24 J	0.11 J	ND	0.9	1.8	ND	0.55
Potassium	27.6 Ј	15 J	74.2 Ј	ND	73 J	54.7 Ј	36.8 J	34.2 J
Selenium	ND	ND	0.63	ND	ND	ND	0.34 J	0.32 Ј
Silver	ND	0.11 J						
Sodium	ND							
Thallium	ND							
Vanadium	2.4	1.8 J	4.7	0.44 J	6.8	3.6 J	0.49 J	3.8
Zinc	5.2	3	0.36 Ј	ND	1.9 J	25.4	10.8	5.6

ND - Not Detected

mg/kg = Milligrams per Kilogram

TABLE 6-1
SUMMARY OF POSITIVELY DETECTED INORGANICS IN FINE SAND SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG26-00	BASE-BG27-00	BASE-BG28-00	BASE-BG30-00	BASE-BG31-00	BASE-BG32-00	BASE-BG33-00	BASE-BG34-00
SAMPLE DATE	7/14/00	7/14/00	7/15/00	7/12/00	7/16/00	7/15/00	7/14/00	7/15/00
METALS (mg/kg)								
Aluminum	919	73 Ј	2870	29.4	6350	1470	31	1820
Antimony	0.37 Ј	0.26 J	ND	ND	ND	ND	ND	0.28 J
Arsenic	ND	ND	0.35 J	ND	ND	ND	ND	ND
Barium	4.3	0.73 J	6.9	ND	24	2.2	ND	3.5
Beryllium	0.026 J	ND	0.05 J	ND	0.08 J	0.033 J	0.018 J	0.036 J
Cadmium	ND	ND	0.056 J	ND	ND	ND	ND	ND
Calcium	126	12.4 J	2030	ND	67.8 J	ND	ND	67.5 J
Chromium	1.3	ND	4.3	ND	4.1	1.3	ND	1.9
Cobalt	ND	ND	0.16 J	ND	0.26 J	ND	ND	0.12 J
Copper	1.3	ND	1.7	0.9	1.2	ND	ND	2.2
Iron	456	51.4 J	2200	26.3	2670	1030	40.2	836
Lead	3,2	1 J	3.4	0.53 J	5.7	2.3	1.2	2.6
Magnesium	29 Ј	ND	107	ND	115	38.5 J	ND	53.5 J
Manganese	4.1 J	ND	8.5 J	ND	5	9.4 J	5.2 J	14.2 Ј
Mercury	ND	0.021 Ј	ND	ND	0.12 J	ND	ND	ND
Nickel	0.35 J	ND	0.76	ND	1.4	0.31 J	ND	0.53
Potassium	ND	5.8 J	66.3 J	ND	79 Ј	28.9 J	ND	29.8 Մ
Selenium	ND	ND	0.37 J	ND	ND	ND	ND	ND
Silver	ND							
Sodium	ND							
Thallium	ND							
Vanadium	1.5 B	0.36 Ј	5.2	0.14 Ј	6.5	2.3 Ј	0.35 J	2.4
Zinc	2.7	ND	3.1	ND	ND	1.8 J	ND	5,4

Notes: ND - Not Detected

mg/kg = Milligrams per Kilogram

TABLE 6-1
SUMMARY OF POSITIVELY DETECTED INORGANICS IN FINE SAND SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG35-00	BASE-BG36-00	BASE-BG37-00	BASE-BG38-00	BASE-BG39-00	BASE-BG41-00	BASE-BG42-00	BASE-BG43-00
SAMPLE DATE	7/16/00	7/15/00	7/16/00	7/16/00	7/16/00	7/15/00	7/16/00	7/16/00
METALS (mg/kg)								
Aluminum	2630 Ј	670	2450 J	54.5	1040	1120	2420	79.6
Antimony	0.46 Ј	0.28 J	0.55 J	ND	ND	0.48 J	ND	ND
Arsenic	ND	ND	ND	ND	ND	0.37 J	ND	ND
Barium	6	2.2	1.6	0.93 J	4.4	2.5	4.6	1.1
Beryllium	0.06 J	0.033 J	ND	ND	ND	0.037 J	0.041 J	ND
Cadmium	ND	ND	ND	ND	0.037 J	0.064 J	ND	ND
Calcium	423	77.2 Ј	30.7 J	143	222	402	268	25.3 J
Chromium	2.2	0.9	2.6	0.24 J	1.4	1.7	2.3	0.41 J
Cobalt	0.15 J	ND	ND	ND	ND	ND	0.14 J	ND
Copper	38.5	1.1	ND	0.43 J	0.88	1.2	5.4	0.29 J
Iron	1520 J	434	538 J	40.1	369	724	1090	55.8
Lead	4.3 J	3.9	2.4 J	0.99	5.8	2.1	3.7	1.5
Magnesium	159	32.1 J	19.8 J	21.6 J	24.7 J	42.2 J	81.1 J	9.8 J
Manganese	16.9	2.8 J	ND	0.74 Ј	1.7	4.5 J	5.8	0.94 Ј
Mercury	0.04	ND	0.029 J	0.051 J	0.086 J	ND	0.059 J	0.047 J
Nickel	0.62	ND	0.3 J	ND	0.19 J	0.37 Ј	0.53 J	ND
Potassium	47 J	ND	23.7 Ј	10.2 Ј	18.7 J	ND	33.6 Ј	13 Ј
Selenium	0.46 J	ND	0.31 J	ND	ND	ND	ND	ND
Silver	ND							
Sodium	ND							
Thallium	ND							
Vanadium	2.4	1.5 J	3.7	0.27 J	1.5 J	1.8 J	2 Ј	0.54 J
Zinc	3.4	1.3 Ј	5.3	ND	6.3	1.5 Ј	73.9	ND

ND - Not Detected

mg/kg = Milligrams per Kilogram

TABLE 6-1
SUMMARY OF POSITIVELY DETECTED INORGANICS IN FINE SAND SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG44-00	BASE-BG45-00	BASE-BG46-00	BASE-BG47-00	BASE-BG48-00	BASE-BG49-00	BASE-BG50-00
SAMPLE DATE	7/16/00	7/17/00	7/13/00	7/16/00	7/12/00	7/12/00	7/12/00
METALS (mg/kg)							
Aluminum	3160	664	478	708	40.8	7280	41.6
Antimony	ND	ND	0.46 J	ND	ND	ND	ND
Arsenic	0.58 J	ND	ND	ND	ND	0.39 J	0.27
Barium	13.8	2.7	2.1	4.5	ND	19.5	ND
Beryllium	0.079 J	0.012 J	ND	0.016 J	ND	0.11 J	ND
Cadmium	ND						
Calcium	56.2 J	72.1 J	58.6 J	176	ND	369	ND
Chromium	2.7	1.2	0.7	1.3	ND	6.9	ND
Cobalt	0.13 J	ND	ND	0.11 J	ND	0.37 J	ND
Copper	0.96	0.44 J	4.9	0.89	ND	0.98	ND
Iron	1400	346	298	412	34.8	2290	94.5
Lead	6.1	1.7	5,5 J	2.4	0.57 Ј	5.2 J	1.4 J
Magnesium	68.9 J	25.8 J	22.2 J	30.1 J	ND	222	ND
Manganese	8.6	2	2 Ј	8	ND	3.7	0.64 J
Mercury	0.096 J	0.06 J	ND	0.058 J	ND	0.023 J	0.02 J
Nickel	0.58	ND	0.15 J	0.44 Ј	ND	1.3	ND
Potassium	39.7 J	23.6 J	19.4 J	24.7 Ј	ND	212 J	ND
Selenium	ND						
Silver	ND						
Sodium	ND						
Thallium	ND						
Vanadium	3.8	1.6 J	1.2 J	2.7	0.16 J	10.5	0.54 J
Zinc	ND	ND	8.5	ND	ND	3.2	ND

ND - Not Detected

mg/kg = Milligrams per Kilogram

TABLE 6-2
SUMMARY OF POSITIVELY DETECTED INORGANICS IN LOAMY SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

				0.000.1				
SAMPLE ID	BASE-BG01-00	BASE-BG07-00	BASE-BG08-00	BASE-BG12-00	BASE-BG13-00	BASE-BG14-00	BASE-BG15-00	BASE-BG16-00
SAMPLE DATE	7/11/00	7/13/00	7/16/00	7/11/00	7/11/00	7/12/00	7/16/00	7/13/00
METALS (mg/kg)								
Aluminum	2040	2170	3680 Ј	9130	5390	3770	4730 J	4820
Antimony	ND	ND	0.32 J	ND	0.49 J	ND	0.3 J	0.34 J
Arsenic	ND	ND	0.62 J	0.73 J	0.49 J	ND	ND	1
Barium	3.9	7.3	16.7	19.6	9.2	12	10	20
Beryllium	ND	0.029 J	0.077 Ј	0.14 J	ND	ND	0.1 Ј	0.072 J
Cadmium	ND	0.056 J						
Calcium	ND	299	11500	200	75.3 J	344	44.3 J	8720
Chromium	2.7	2.3	4.6	9.6	6.1 J	3.3	5	7.4
Cobalt	ND	ND	0.44 J	0.45 J	0.31 J	0.1 J	0.51 J	0.29 J
Copper	0.33 J	ND	2	2.2	1.6	0.57 J	1.6	5.8
Iron	251	1300	2410 J	6050	7900	2910	1220 J	3940
Lead	3.2 J	12.1 J	8.2 J	9.9 J	5.4 J	5.1 J	7.9 J	26.8 J
Magnesium	25.9 J	45.4 J	286	241	130	114 J	131	330
Manganese	0.81 J	1.3 J	49	7.3	3.1	5.3	2.5	13.6 J
Mercury	0.041	ND	0.052	0.06	ND	0.032 J	0.061	ND
Nickel	0.31 J	0.42 J	1.2	1.7	0.83	0.49 J	0.72	1.4
Potassium	46.4 J	35.9 J	139	168 J	162	61.7 J	124	102
Selenium	ND	ND	0.43 J	0.73 J	0.38 J	0.42 J	8.0	ND
Silver	ND	ND	ND	ND	0.097 J	ND	ND	1.1
Sodium	ND							
Thallium	ND							
Vanadium	3.3	4.1	7.6	16.6	12.4 J	4.8	5.6	9.1
Zinc	ND	3.5	6	4.8	4.3	2.8	1 Ј	25.2

ND - Not Detected

mg/kg - Milligrams per Kilogram
J - Resultant concentration is estimated

TABLE 6-2
SUMMARY OF POSITIVELY DETECTED INORGANICS IN LOAMY SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG19-00	BASE-BG29-00	BASE-BG40-00		
SAMPLE DATE	7/14/00	7/12/00	7/16/00		
METALS (mg/kg)					
Aluminum	5680	2070	17600 J		
Antimony	ND	ND	0.6 J		
Arsenic	0.83 J	ND	1.3 J		
Barium	15.2	5.9	15.7		
Beryllium	0.075 J	ND	0.53 J		
Cadmium	ND	ND	ND		
Calcium	726	4210	80.5 J		
Chromium	7.2	2.8	12.6		
Cobalt	0.21 J	0.1 J	0.36 Ј		
Copper	1.5	1.6	1.4		
Iron	3280	1660	12200 J		
Lead	11.7	3.8 J	8.7 J		
Magnesium	193	92 J	226		
Manganese	5.4 J	28	6.3		
Mercury	ND	ND	0.11		
Nickel	0.96	ND	1.5		
Potassium	135	58.9 J	133 J		
Selenium	0.28 J	ND	3.4		
Silver	ND	ND	0.21 Ј		
Sodium	ND	ND	ND		
Thallium	ND	ND	ND		
Vanadium	11.1	4.8	26.2		
Zinc	5.2	5.7	2.1 J		

ND - Not Detected

mg/kg - Milligrams per Kilogram

TABLE 6-3
SUMMARY OF POSITIVELY DETECTED INORGANICS IN SUBSURFACE SANDS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-120

SAMPLE ID SAMPLE DATE	BASE-BG06-05 7/13/00	BASE-BG08-05 7/16/00	BASE-BG09-05 7/14/00	BASE-BG10-03 7/13/00	BASE-BG12-04 7/11/00	BASE-BG16-04 7/13/00	BASE-BG18-02 7/14/00	BASE-BG19-04 7/14/00	BASE-BG20-01 7/16/00
SAMPLEDATE	7/13/00	//10/00	7/14/00	7/13/00	//11/00	7/13/00	7/14/00	//14/00	7/16/00
METALS (mg/kg)									
Aluminum	3330	1570 J	7640	1410	1740	1200	260 J	4620	4070 J
Antimony	ND	0.41 J	ND	0.35 J	ND	ND	ND	ND	ND
Arsenic	1.1	ND	ND	ND	ND	ND	ND	0.88 J	ND
Barium	18.2	3.4	7.9	2	3.9	3.2	1.2	5.3	10.4
Beryllium	ND	ND	0.097 J	0.028 Ј	ND	0.024 J	ND	0.058 J	0.062 J
Calcium	61.3 J	22.8 J	ND	63.2 J	ND	73.6 J	12.7 J	ND	87.2 J
Chromium	5.2	3.2	7.5	1.6	1.8	1.6	0.83	5.3	7.8
Cobalt	0.1 J	ND	0.35 J	ND	0.11 J	ND	ND	0.14 J	0.21 J
Copper	1.4	ND	ND	ND	0.24 J	ND	ND	ND	0.95
Iron	2410	1130 Ј	1330	356	329	481	121 J	1580	840 J
Lead	3 J	2.5 J	5.1	1.9 J	1.9 J	1.8 J	1.3 J	3,3	5.1 J
Magnesium	78.1 J	63.3 J	214	46.9 J	44.7 J	38.5 J	16.8 J	130	144
Manganese	1.4	2	3.7 Ј	1.3 J	2	1.6 J	1.9	2 J	4.7
Mercury	ND	0.029 J	ND	ND	0.022 J	ND	ND	ND	0.031 J
Nickel	ND	ND	1.2	0.2 J	0.37 J	0.34 Ј	ND	0.55 J	0.39 J
Potassium	66 J	57.9 J	292	32 J	53.6 J	31.8 Ј	17.6 J	130	176
Selenium	0.27 J	0.4 J	ND	ND	ND	ND	ND	0.26 J	0.44 Ј
Silver	ND								
Vanadium	7.4	7.7	6.3	1.7 J	1.9 J	2.3 J	0.75 Ј	7.6	13.7
Zinc	ND	ND	4.2	ND	ND	ND	ND	1.5 J	0.33 J

Notes: ND - Not Detected

mg/kg - Milligrams per Kilogram

TABLE 6-3
SUMMARY OF POSITIVELY DETECTED INORGANICS IN SUBSURFACE SANDS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-120

SAMPLE ID SAMPLE DATE	BASE-BG21-02 7/15/00	BASE-BG22-04 7/14/00	BASE-BG23-01 7/11/00	BASE-BG25-01 7/14/00	BASE-BG26-03 7/14/00	BASE-BG27 7/14/00	BASE-BG30-01 7/12/00	BASE-BG31-04 7/16/00	BASE-BG33-02 7/14/00
METALS (mg/kg)									
Aluminum	8640	5810 J	9900	1340	3630	4640 J	3800	407	1100 J
Antimony	ND	0.31 J	0.31 J	0.2 J	0.32 J	0.4 J	ND	ND	0.26 J
Arsenic	ND	ND	0.92 J	ND	ND	0.34 J	ND	ND	ND
Barium	7.1	7.4	13.9	4	6.8	15.3	1.8	1.4	1.6
Beryllium	0.081 J	0.07 J	ND	0.028 J	0.049 J	0.07 J	ND	ND	ND
Calcium	ND	41.6 J	499	83.8 J	ND	71.3 J	ND	21.3 J	ND
Chromium	9.4	7.4	9.6 J	1.5	4.2	4.5	6.1	1	1.3
Cobalt	0.74	0.22 J	0.84	ND	0.2 J	0.6	ND	ND	0.16 J
Соррег	ND	ND	3.1	0.25 J	2.8	1.7	0.58	0.47 J	ND
Iron	1770	877 J	4600	953	1530	3440 J	93.1	222	485 J
Lead	6	4.1 J	4 J	1.9	2.8	3.5 J	3.6 J	1.6	1.1 J
Magnesium	193	166	197	65.5 J	101 J	216	16.9 Ј	22.6 J	39 J
Manganese	5.9	2.8	4.5	2.2	2.4 J	7.1	0.75 J	1 Ј	2.3
Mercury	0.061	ND	0.024 J	0.025 J	ND	0.022 Ј	0.039	0.042 J	0.021 J
Nickel	1.9	0.37 Ј	3.6	0.44 J	0.95	1.6	0.26 J	ND	0.64
Potassium	190	235	189	33.4 J	64.2 J	121	28.5 J	22.6 J	22.4 J
Selenium	ND	0.24 J	ND	ND	ND	0.32 J	0.31 Ј	ND	0.29 J
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	7.1	8.6	11.7 J	2.4	5.4	8.9	3	1.1 J	1.4 J
Zinc	3.4	0.84 J	5.1	ND	2.5	1.8 J	ND	ND	ND

Notes:

ND - Not Detected

mg/kg - Milligrams per Kilogram

J - Resultant Concentration is Estimated

TABLE 6-3
SUMMARY OF POSITIVELY DETECTED INORGANICS IN SUBSURFACE SANDS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-120

SAMPLE ID SAMPLE DATE	BASE-BG34-03 7/15/00	BASE-BG35-01 7/16/00	BASE-BG36-01 7/15/00	BASE-BG37 7/16/00	BASE-BG38-01 7/16/00	BASE-BG39-01 7/16/00	BASE-BG42-01 7/16/00	BASE-BG43-03 7/16/00	BASE-BG44-03 7/16/00
METALS (mg/kg)									
Aluminum	2200	1210 J	9670	3720 J	372	2470 J	3500	1620	6450
Antimony	0.28 J	0.23 J	ND	ND	ND	0.27 J	ND	ND	ND
Arsenic	ND	ND	1.4	ND	ND	ND	0.37 J	ND	ND
Barium	4	3.2	12.7	4.2	0.67 Ј	4	5.9	1.8	8
Beryllium	0.038 J	0.015 J	0.068 J	ND	ND	0.013 J	0.054 J	ND	0.04 J
Calcium	ND	112	66.7 Ј	29.2 J	41.6 J	28 J	159	28.3 J	42.7 J
Chromium	2.5	1.4	13.2	4.4	1.2	2.7	2.2	1.7	7.1
Cobalt	0.24 J	ND	1	0.23 Ј	ND	0.14 J	ND	0.11 J	0.26 J
Copper	ND	0.67	ND	ND	0.23 Ј	ND	3.3	1.2	0.75
Iron	624	715 J	4310	1380 J	81.5	626 J	1120	611	1720
Lead	1.4	1.7 J	5.2	2.6 J	1.6	2.2 J	3.5	1.5	3.2
Magnesium	86.3 J	54.8 J	209	106 J	13.5 Ј	87.1 J	87 J	30.1 J	167
Manganese	3.9 J	2.7	4.2 J	2	1.1 J	1.8	4.2	1.3	2.6
Mercury	ND	0.025 J	ND	0.026 J	0.06 J	0.021 J	0.061 J	0.055 J	0.054 J
Nickel	0.66	ND	3	0.94	ND	0.12 J	0.52 J	0.71	0.8
Potassium	51.1 J	37.2 J	124	66.9 Ј	16 Ј	44.8 J	31 J	22.4 J	121 J
Selenium	ND	ND	0.46 Ј	0.47 J	ND	ND	ND	ND	ND
Silver	ND	ND	0.1 _. J	ND	ND	ND	ND	ND	ND
Vanadium	2.3	1.4 J	11.9	4.6	0.6 Ј	2.6	2 Ј	1.7 J	7.1
Zinc	1.1 J	ND	2.3	ND	ND	ND	7.9	ND	4.2

Notes:

ND - Not Detected

mg/kg - Milligrams per Kilogram

J - Resultant Concentration is Estimated

TABLE 6-3 SUMMARY OF POSITIVELY DETECTED INORGANICS IN SUBSURFACE SANDS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-120

SAMPLE ID	BASE-BG48-01	BASE-BG50-01
SAMPLE DATE	7/12/00	7/12/00
MEDITAL CO.		
METALS (mg/kg)		
Aluminum	3640	4680
Antimony	ND	ND
Arsenic	ND	ND
Barium	1.8	3.3
Beryllium	ND	ND
Calcium	ND	ND
Chromium	6.1	6.1
Cobalt	ND	0.41 J
Copper	0.52 J	ND
Iron	251	1160
Lead	3.4 J	2.8 J
Magnesium	28.7 J	58.6 J
Manganese	1.1	3.7
Mercury	0.044	0.042
Nickel	0.51 J	2
Potassium	34.3 J	46.4 J
Selenium	0.32 J	ND
Silver	ND	ND
Vanadium	3	6.4
Zinc	ND	ND

Notes: ND - Not Detected

mg/kg - Milligrams per Kilogram

J - Resultant Concentration is Estimated

TABLE 6-4
SUMMARY OF POSITIVELY DETECTED INORGANICS IN SUBSURFACE SILTS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG01-02	BASE-BG04-02	BASE-BG14-01	BASE-BG24-01	BASE-BG28-02	BASE-BG29-02	BASE-BG32-03	BASE-BG40-01	BASE-BG41-01
SAMPLE DATE	7/11/00	7/11/00	7/12/00	7/13/00	7/15/00	7/12/00	7/15/00	7/16/00	7/15/00
Company of the Compan									
METALS (mg/kg)									
Aluminum	2830	4660	4500	5260	16800	8160	2540	4780	3310
Antimony	ND	ND	ND	ND	0.47 J	ND	ND	ND	ND
Arsenic	ND	ND	ND	ND	1.9	0.42 J	ND	ND	0.43 J
Barium	5.2	10.5	15.6	3.2	23.1	16.6	0.92 J	5.7	3.1
Beryllium	ND	ND	ND	0.023 J	0.15 Ј	ND	0.16 J	0.036 J	0.046 J
Calcium	ND	104 J	4950	ND	557	98.7 Ј	ND	37.3 Ј	82.6 J
Chromium	2.8	5.6	4.6	5.2	22.5	9.7	2.5	4.4	4.8
Cobalt	ND	0.22 J	0.23 J	0.25 J	0.68	0.43 J	0.14 J	0.41 J	ND
Copper	ND	0.44 J	1.2	ND	3	1.9	1.6	0.59 J	ND
Iron	322	1290	2720	1370	15600	4120	102	1440	776
Lead	3.1 J	5.2 J	8.7 J	2.6 J	8.1	6.2 J	1	2.6	3.3 J
Magnesium	62.3 J	151	190	55.2 J	525	266	ND	123 J	24.4 Ј
Manganese	1.1	3	17.2	1 J	6.9 J	3.9	3.5 J	1.9	0.74 J
Mercury	0.041	0.03 J	0.027 Ј	ND	ND	ND	ND	0.085 J	ND
Nickel	0.33 J	0.76	1	2	2.8	1.4	ND	1.2	0.42 J
Potassium	45.7 J	131 Ј	102 J	33.6 Ј	434	264 J	ND	63.5 J	17.4 J
Selenium	0.25 J	ND	0.3 J	ND	0.77	0.42 J	0.27 J	ND	ND
Silver	ND	ND	ND	ND	0.24 J	ND	ND	ND	ND
Vanadium	3	5.1	7.2	9.9	33.9	. 14	0.35 J	5.7	2 J
Zinc	ND	ND	6.9	ND	7.4	6.1	ND	ND	ND

Notes: ND - No

ND - Not Detected

mg/kg - Milligrams per Kilogram

J - Resultant concentration is estimated

TABLE 6-4
SUMMARY OF POSITIVELY DETECTED INORGANICS IN SUBSURFACE SILTS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG45-01	BASE-BG46-02	BASE-BG49-02
SAMPLE DATE	7/17/00	7/13/00	7/12/00
METALS (mg/kg)			
Aluminum	4890	1450	9510
Antimony	ND	ND	ND
Arsenic	3.2	ND	2.6
Barium	5.7	1.4	12.1
Beryllium	0.042 J	0.039 J	0.22 Ј
Calcium	42 J	ND	256
Chromium	9	1.9	15.9
Cobalt	0.13 J	ND	0.39 J
Copper	0.72	ND	2.2
Iron	2490	1250	6550
Lead	4.2	1.8 J	5,3 J
Magnesium	168	14.9 J	367
Manganese	2.6	0.57 J	5.7
Mercury	0.16 J	ND	0.034 J
Nickel	0.5 J	0.13 J	0.97
Potassium	120 J	11.9 J	546 J
Selenium	ND	ND	ND
Silver	ND	ND	0.12 Ј
Vanadium	6.6	3.2	17.1
Zinc	3.3	ND	5

Notes:

ND - Not Detected

mg/kg - Milligrams per Kilogram

J - Resultant concentration is estimated

TABLE 6-5
SUMMARY OF POSITIVELY DETECTED INORGANICS IN SUBSURFACE CLAYS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG02-03	BASE-BG03-02	BASE-BG05-02	BASE-BG07-03	BASE-BG11-03	BASE-BG13-03	BASE-BG15-03	BASE-BG17-04	BASE-BG47-04
SAMPLE DATE	7/13/00	7/13/00	7/13/00	7/13/00	7/11/00	7/11/00	7/16/00	7/13/00	7/16/00
394 TATES									
METALS (mg/kg)									
Aluminum	6000	10700	10900	6860	8800	14900	15600 J	6850	5290
Antimony	ND	ND	ND	0.28 J	ND	ND	0.5 J	ND	ND
Arsenic	1 J	8.3	9.3	ND	3.9	0.55 J	8.1	0.43 J	3.3
Barium	12.7	21.4	13.4	11.1	15.7	14.6	22.4	8.2	27.1
Beryllium	ND	0.19 J	0.16 J	0.13 J	0.24 J	0.26 Ј	0.26 J	ND	0.91
Calcium	235	172	1800	42.9 J	148	112 J	30.4 J	181	458
Chromium	13.2	20.8	19.3	9.3	22.6	15.9 J	23.3	9.3	11.3
Cobalt	0.14 J	0.47 J	0.46 J	1.1	0.32 J	0.67	0.71	0.32 J	6.8
Copper	1.8	3.6	3.9	1.8	4.2	3.2	3.5	0.85	6.7
Iron	3020	13300	14000	1450	5050	4100	12000 J	1420	8450
Lead	8.6 J	10.7 J	10.7 J	6.6 J	10 J	7.5 Ј	12.2 J	4.8 J	5.4
Magnesium	323	572	568	212	264	343	617	242	1250
Manganese	3.5	5.1 J	5.9 J	3.4 J	4.5	5.2	6.7	3	67.6
Mercury	ND	0.09	0.045	ND	0.044 Ј	ND	0.036 J	ND	0.059 J
Nickel	0.86	1.1	1.1	1.4	1.2	1.6	2	0.93	12.3
Potassium	303 J	565	518	275	869 J	644	784	269 J	668 J
Selenium	ND	0.51 J	0.59 J	ND	0.49 Ј	ND	1.3	ND	0.3 J
Silver	ND	0.15 J	0.19 J	ND	ND	ND	0.36 J	ND	0.1 J
Vanadium	9.3	31.9	32	9.7	24.2	13.6 Ј	39	8.8	11.1
Zinc	4.2	6.4	6.5	4.3	4.8	11.8	6.4	ND	39.7

Notes:

ND - Not Detected

mg/kg - Milligrams per Kilogram
J - Resultant concentration is estimated

TABLE 6-6
STATISTICS SUMMARY FOR INORGANICS IN FINE SAND SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

	Distribution	Frequency of Detection	Range	Average_ Concentration	2X Average Concentraion	Standard Deviation	2X Standard Deviation	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	2X Log Standard Deviation
METALS (mg/kg)										
Aluminum	Neither	39/39	29.4 - 8530	1951.28	3902.55	2059.15	4118.29	6.7	1.7	3.4
Antimony	Neither	14/39	ND - 0.9J	0.21	0.43	0.17	0.34	-1.76	0.63	1.26
Arsenic	Neither	12/39	ND - 0.85J	0.26	0.51	0.21	0.42	-1.59	0.62	1.24
Barium	Neither	35/39	ND - 24	5.80	11.60	5.48	10.96	1.21	1.26	2.52
Beryllium	Neither	24/39	ND - 0.11J	0.04	0.07	0.03	0.06	-3.73	1	2
Cadmium	Neither	4/39	ND - 0.11J	0.02	0.03	0.02	0.04	-4.37	0.56	1.12
Calcium	Neither	32/39	ND - 105000	3404.70	6809.40	16933.15	33866.31	4.77	1.98	3.96
Chromium	Lognormal	33/39	ND - 9.7	2.25	4.50	2.38	4.77	0.2	1.26	2.52
Cobalt	Neither	18/39	ND - 0.4J	0.12	0.23	0.10	0.20	-2.48	0.78	1.56
Copper	Lognormal	29/39	ND - 38.5	2.61	5.22	6.61	13.22	-0.1	1.31	2.62
Iron	Neither	39/39	26.3 - 5000	974.64	1949.29	1093.71	2187.42	6.14	1.45	2.9
Lead	Lognormal	39/39	0.45 - 38.5J	5.24	10.47	7.47	14.93	1.18	0.93	1.86
Magnesium	Lognormal	32/39	ND - 1610	105.78	211.57	258.15	516.30	3.64	1.41	2.82
Manganese	Lognormal	34/39	ND - 25.9	5.66	11.33	5.87	11.74	1.15	1.24	2.48
Mercury	Lognormal	19/39	ND - 0.12J	0.04	0.07	0.02	0.05	-3.48	0.59	1.18
Nickel	Neither	27/39	ND - 1.8	0.52	1.05	0.51	1.01	-1.28	1.28	2.56
Potassium	Lognormal	30/39	ND - 263J	44.58	89.15	56.19	112.38	3.17	1.21	2.42
Selenium	Neither	9/39	ND - 0.63	0.18	0.37	0.14	0.28	-1.87	0.54	1.08
Silver	Neither	1/39	ND - 0.11J	0.04	0.09	0.01	0.02	-3.13	0.17	0.34
Sodium	Neither	1/39	ND - 307	41.43	82,86	45.38	90.77	3.52	0.55	1.1
Thallium	Neither	0/39	ND	0.18	0.35	0.01	0.03	-1.74	0.07	0.14
Vanadium	Lognormal	37/39	0.14J - 13.4	3.00	5.99	3.09	6.18	0.56	1.15	2.3
Zinc	Lognormal	24/39	ND - 73.9	5.37	10.75	12.32	24.64	0.66	1.38	2.76

TABLE 6-7
STATISTICS SUMMARY FOR INORGANICS IN LOAMY SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

	Distribution	Frequency of Detection	Range	Average Concentraion	2X Average Concentration	Standard Deviation	2X Standard Deviation	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	2X Log Standard Deviation
METALS (mg/kg)										
Aluminum	Lognormal	11/11	2040 - 17600J	5552.73	11105.45	4492.07	8984.14	8.41	0.65	1.31
Antimony	Normal	5/11	ND - 0.6J	0.25	0.51	0.17	0.35	-1.59	0.69	1.38
Arsenic	Normal	6/11	ND - 1.3J	0.52	1.03	0.41	0.83	-1.02	0.93	1.86
Barium	Normal	11/11	3.9 - 20	12.32	24.64	5.51	11.02	2.40	0.53	1.05
Beryllium	Lognormal	7/11	ND - 0.53J	0.11	0.21	0.14	0.29	-2.71	0.90	1.81
Cadmium	Neither	1/11	ND - 0.056J	0.02	0.03	0.01	0.03	-4.29	0.50	1.00
Calcium	Lognormal	10/11	ND - 11500	2383.03	4766.05	4053.82	8107.64	5.94	2.20	4.41
Chromium	Normal	11/11	2.3 - 12.6	5.78	11.56	3.23	6.46	1.62	0.56	1.11
Cobalt	Normal	9/11	ND - 0.51J	0.26	0.52	0.17	0.34	-1.66	0.93	1.86
Соррет	Lognormal	10/11	ND - 5.8	1.73	3.46	1.49	2.97	0.26	0.82	1.64
Iron	Normal	11/11	251 - 12200J	3920.09	7840.18	3540.76	7081.51	7.86	1.06	2.13
Lead	Lognormal	11/11	3.2J - 26.8J	9.35	18.69	6.51	13.02	2.06	0.60	1.20
Magnesium	Normal	11/11	25.9J - 330	164.94	329.87	98.04	196.07	4.88	0.79	1.57
Manganese	Lognormal	11/11	0.81J - 49	11.15	22.29	14.74	29.47	1.74	1.23	2.45
Mercury	Normal	6/11	ND - 0.11	0.05	0.11	0.04	0.07	-3.19	0.80	1.61
Nickel	Normal	10/11	ND - 1.7	0.90	1.80	0.49	0.98	-0.26	0.60	1.21
Potassium	Normal	11/11	35.9J - 168J	105.99	211.98	47.57	95.13	4.55	0.54	1.08
Selenium	Lognormal	7/11	ND - 3.4	0.63	1.25	0.95	1.90	-1.08	1.07	2.14
Silver	Neither	3/11	ND - 1.1	0.16	0.32	0.32	0.63	-2.59	1.02	2.04
Sodium	Normal	0/11	ND	37.02	74.04	20.50	41.00	3.48	0.53	1.06
Thallium	Neither	0/11	ND	0.20	0.39	0.04	0.08	-1.65	0.18	0.36
Vanadium	Lognormal	11/11	3.3 - 26.2	9.60	19.20	6.86	13.72	2.06	0.64	1.29
Zinc	Lognormal	10/11	ND - 25.2	5.55	11.10	6.77	13.55	1.24	1.04	2.08

TABLE 6-8
STATISTICS SUMMARY FOR INORGANICS IN SUBSURFACE SANDS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

	Distribution	Frequency of Detection	Range	Average Concentraion	2X Average Concentration	Standard Deviation	2X Standard Deviation	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	2X Log Standard Deviation
METALS (mg/kg)										
Aluminum	Lognormal	29/29	260J - 9900	3608.24	7216.48	2732.39	5464.77	7.84	0.95	1.9
Antimony	Neither	11/29	ND - 0.41J	0.19	0.38	0.10	0.20	-1.8	0.51	1.02
Arsenic	Neither	6/29	ND - 1.4	0.29	0.58	0.33	0.67	-1.59	0.71	1.42
Barium	Lognormal	29/29	0.67J - 18.2	5.67	11.34	4.56	9.11	1.43	0.83	1.66
Beryllium	Neither	16/29	ND - 0.097J	0.03	0.07	0.03	0.05	-3.75	0.97	1.94
Cadmium	Neither	0/29	ND	0.01	0.02	0.00	0.00	-4.49	0.05	0.1
Calcium	Lognormal	19/29	ND - 499	58.19	116.39	92.04	184.08	3.49	1.02	2.04
Chromium	Lognormal	29/29	0.83 - 13.2	4.43	8.86	3.17	6.34	1.21	0.79	1.58
Cobalt	Neither	18/29	ND - 1.4	0.23	0.45	0.26	0.52	-2.02	1.04	2.08
Copper	Lognormal	15/29	ND - 3.3	0.76	1.52	0.89	1.77	-0.75	0.94	1.88
Iron	Lognormal	29/29	81.5 - 4600	1211.92	2423.83	1167.35	2334.69	6.65	1.05	2.1
Lead	Normal	29/29	1.1 J - 6	2.88	5.77	1.32	2.64	0.96	0.46	0.92
Magnesium	Lognormal	29/29	13.5J - 216	93.84	187.68	66.80	133.61	4.25	0.83	1.66
Manganese	Lognormal	29/29	0.75J - 7.1	2.69	5.39	1.55	3.10	0.84	0.56	1.12
Mercury	Lognormal	19/29	ND - 0.061J	0.03	0.06	0.02	0.03	-3.59	0.53	1.06
Nickel	Lognormal	23/29	ND - 3.6	0.78	1.56	0.88	1.75	-0.87	1.25	2.5
Potassium	Lognormal	29/29	16J - 2 92	81.31	162.63	72.85	145.71	4.05	0.83	1.66
Selenium	Neither	11/29	ND - 0.47J	0.21	0.41	0.12	0.24	-1.72	0.52	1.04
Silver	Neither	1/29	ND - 0.1J	0.05	0.09	0.01	0.02	-3.08	0.16	0.32
Sodium	Normal	0/29	ND	35.41	70.82	11.97	23.93	3.5	0.38	0.76
Thallium	Neither	0/29	ND	0.18	0.37	0.01	0.02	-1.7	0.06	0.12
Vanadium	Lognormal	29/29	0.6J - 13.7	4.92	9.83	3.70	7.40	1.27	0.87	1.74
Zinc	Lognormal	12/29	ND - 7.9	1.54	3.08	1.82	3.64	-0.19	1.2	2.4

TABLE 6-9
STATISTICS SUMMARY FOR INORGANICS IN SUBSURFACE SILTS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

	Distribution	Frequency of Detection	Range	Average Concentraion	2X Average Concentraion	Standard Deviation	2X Standard Deviation	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	2X Log Standard Deviation
METALS (mg/kg)										
Aluminum	Lognormal	12/12	1450 - 16800	5724.17	11448.33	4155.89	8311.78	8.46	0.65	1.3
Antimony	Neither	1/12	ND - 0.47J	0.16	0.32	0.10	0.21	-1.95	0.43	0.86
Arsenic	Neither	5/12	ND - 3.2	0.80	1.60	1.10	2.21	-1.01	1.23	2.46
Barium	Normal	12/12	0.92J - 23.1	8.59	17.19	6.99	13.98	1.77	1	2
Beryllium	Lognormal	8/12	ND - 0.22J	0.07	0.15	0.06	0.13	-2.88	0.73	1.46
Cadmium	Normal	0/12	ND	0.01	0.02	0.00	0.00	-4.43	0.05	0.1
Calcium	Lognormal	8/12	ND - 4950	513.85	1027.71	1405.86	2811.71	4.17	1.98	3.96
Chromium	Lognormal	12/12	1.9 - 22.5	7.41	14.82	6.14	12.29	1.74	0.74	1.48
Cobalt	Normal	9/12	ND - 0.68	0.25	0.50	0.19	0.39	-1.72	0.93	1.86
Copper	Normal	8/12	ND - 3	1.03	2.05	0.95	1.91	-0.5	1.18	2.36
Iron	Lognormal	12/12	102 - 15600	3169.17	6338.33	4308.61	8617.22	7.36	1.33	2.66
Lead	Normal	12/12	1 - 8.7J	4.34	8.68	2.42	4.85	1.3	0.63	1.26
Magnesium	Normal	11/12	ND - 525	162.75	325.49	157.62	315.23	4.48	1.35	2.7
Manganese	Lognormal	12/12	0.57J - 17.2	4.01	8.02	4.60	9.20	0.92	1	2
Mercury	Lognormal	6/12	ND - 0.16J	0.04	0.09	0.04	0.08	-3,35	0.65	1.3
Nickel	Normal	11/12	ND - 2.8	0.96	1.93	0.81	1.61	-0.47	1.13	2.26
Potassium	Lognormal	11/12	ND - 546J	148.14	296.28	176.47	352.94	4.27	1.36	2.72
Selenium	Neither	5/12	ND - 0.77	0.25	0.49	0.19	0.38	-1.6	0.59	1.18
Silver	Neither	2/12	ND - 0.24J	0.07	0.14	0.06	0.12	-2.84	0.52	1.04
Sodium	Normal	0/12	ND	28.98	57.95	10.21	20.42	3.31	0.35	0.7
Thallium	Normal	0/12	ND	0.20	0.39	0.01	0.02	-1.63	0.05	0.1
Vanadium	Lognormal	12/12	0.35J - 33.9	9.00	18.01	9.24	18.49	1.7	1.18	2.36
Zinc	Lognormal	5/12	ND - 7.4	2.86	5.72	2.75	5.50	0.46	1.25	2.5

TABLE 6-10
STATISTICS SUMMARY FOR INORGANICS IN SUB-SURFACE CLAYS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

	Distribution	Frequency of Detection	Range	Average Concentraion	2X Average Concentration	Standard Deviation	2X Standard Deviation	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	2X Log Standard Deviation
METALS (mg/kg)										
Aluminum	Normal	9/9	5290 - 15600J	9544.44	19088.89	3778,37	7556.73	9.1	0.39	0.78
Antimony	Neither	2/9	ND - 0.5J	0.18	0.36	0.13	0.26	-1,85	0.53	1.06
Arsenic	Normal	8/9	ND - 9.3	3.89	7.78	3.75	7.49	0.63	1.51	3.02
Barium	Normal	9/9	8.2 - 27.1	16.29	32.58	6.09	12.19	2.73	0.38	0.76
		9/9 7/9	ND - 0.91	0.25	0.50	0.09	0.52	2.73 -1.76		
Beryllium	Lognormal								0.91	1.82
Cadmium	Normal	0/9	ND	0.01	0.02	0.00	0.00	-4.41	0.05	0.1
Calcium	Lognormal	9/9	30.4J - 1800	353.26	706.51	556.94	1113.88	5.15	1.21	2.42
Chromium	Normal	9/9	9.3 - 23.3	16.11	32.22	5.59	11.19	2.72	0.37	0.74
Cobalt	Lognormal	9/9	0.14J - 6.8	1.22	2.44	2.11	4.22	-0.5	1.08	2.16
Copper	Normal	9/9	0.85 - 6.7	3.28	6.57	1.71	3.42	1.05	0.61	1.22
Iron	Normal	9/9	1420 - 14000	6976.67	13953.33	5071.73	10143.46	8.54	0.9	1.8
Lead	Normal	9/9	4.8J - 12.2J	8.50	17.00	2.59	5.17	2.09	0.33	0.66
Magnesium	Lognormal	9/9	212 - 1250	487.89	975.78	325.17	650.33	6.03	0.57	1.14
Manganese	Neither	9/9	3 - 67.6	11.66	23.31	21.01	42.03	1.81	0.94	1.88
Mercury	Normal	5/9	ND - 0.09	0.04	0.07	0.03	0.05	-3.52	0.73	1.46
Nickel	Neither	9/9	0.86 - 12.3	2.50	5.00	3.69	7.39	0.46	0.81	1.62
Potassium	Normal	9/9	269J - 869J	543.89	1087.78	222.43	444.85	6.21	0.46	0.92
Selenium	Lognormal	5/9	ND - 1.3	0.41	0.82	0.38	0.77	-1.24	0.88	1.76
Silver	Neither	4/9	ND - 0.36J	0.12	0.23	0.11	0.21	-2.46	0.78	1.56
Sodium	Normal	0/9	ND	37.08	74.16	15.22	30.43	3.55	0.38	0.76
Thallium	Neither	0/9	ND	0.20	0.40	0.01	0.02	-1.6	0.06	0.12
Vanadium	Normal	9/9	8.8 - 39	19.96	39.91	11.89	23.77	2.83	0.61	1.22
Zinc	Lognormal	8/9	ND - 39.7	9.52	19.03	11.65	23.30	1.85	0.88	1.76

APPENDIX A SOIL ASSOCIATIONS

APPENDIX A SOIL ASSOCIATIONS

Baymeade-Foreston-Stallings Association

The Baymeade-Foreston-Stallings soils occur on nearly flat lying or slightly sloped areas encompassing 28 percent of Onslow County. This association occurs primarily in the west and central portion of Onslow County. This soil association is comprised of 35 percent Baymeade (BaB, BmB) soils, 15 percent Foreston (Fo) soils, and 10 percent Stalling (St) soils. Forty percent of soils in this association are of lesser extent.

The surface soils at MCB, Camp Lejeune, located in the east central portion of Onslow County, are predominately the Baymeade-Foreston-Stallings association. This association is found on the uplands south of MCAS and Southwest Creek, and east of U.S. Route 17 near Verona between the west bank of the New River. The association then parallels the west bank of the New River down towards Sneads Ferry. The point of land south of Jacksonville where Tarrawa Terrace I and II are located is covered by the association. Mainside, the Naval Hospital, Paradise Point, the officer's quarters, HPIA, and the training areas south of U.S. Route 17 east of Jacksonville (west of State Route 172 between Hubert), Onslow Beach, and north of French Creek are lands covered by the Baymeade-Foreston-Stallings Association.

Baymeade soils are well drained fine sands underlain by fine sandy loam subsoil that are gently sloping or nearly level. Baymeade soils are moderately to highly acidic. Foreston soils are found on slightly convex divides, are well drained, strongly acidic, loamy fine sands with a fine sandy loam subsoil. Stallings soils are poorly drained, nearly level, strongly to extremely acidic, loamy fine sands over fine sandy loam in interstream areas. The minor soils that occur in this association are Murville (Mu), Marvyn (MaC), Torhunta (To), Woodington (Wo), Leon (Ln), Autryville (AuB) and Norfolk (NoA, NoB). The Baymeade, Foreston, Torhunta, Woodington and Stallings soils (St) were formed from similar sediments that had a high content of sand and low to moderate clay content.

Leon-Murville-Kureb Association

Leon-Murville-Kureb soils are present in the southern portion of Onslow County and in the southeast portion of MCB, Camp Leieune. These soils occur in nearly flat interstream areas. This association,

consisting of 53 percent Leon (Ln) soils, 26 percent Murville (Mu) soils and 15 percent Kureb (KuB) soils, occupies 11 percent of Onslow County (SCS, 1992).

The Leon-Murville-Kureb association is located in areas of higher elevation north of S.R. 172 above the Courthouse Bay and Onslow Beach areas. This area is bounded on the north by French Creek and on the east by S.R. 172 as it turns north toward Hubert. There is also a thin finger of the Leon-Murville-Kureb association that is located east of U.S. Route 17 south of Verona and north of Stones Bay and Mill Creek.

Leon soils are nearly level soils found between wide interstream areas. Leon surface and subsoils are poorly drained, strongly to excessively acidic, and fine sandy loams. Murville soils surface and subsoil are strongly acidic, poorly drained and fine sandy loams which are found in interstream areas and depressions. The Kureb soils are found near drainages and undulating areas. Kureb soils are fine sands that are neutral to acidic and very well drained. Minor soils found in this association include St, Wo, Pactolus (Pa), Alpin (AnB), and Baymeade (BaB, BmB) soils. Leon, Murville and Kureb soils were formed from similar parent material that was predominately sand.

Muckalee-Dorovan Association

Muckalee-Dorovan soils occur over 10 percent of Onslow county in and along drainage channels. The Muckalee-Dorovan soils consist of 54 percent Muckalee (Mk) soils, 6 percent of Dorovan (Da) soils, and 40 percent soils of lesser extent (SCS, 1992).

Soils of the Muckalee-Dorovan Association can be found along most creeks at MCB, Camp Lejeune. This includes the shore of Northeast Creek north of the Naval Hospital, Wallace Creek, Stones Creek, French Creek, Harris Creek, Southeast Creek, Hicks Run, Cogduls Creek, Town Creek, Lewis Creek, Mill Creek, and Everett Creek. The north shore of Paradise Point is included in this association.

Muckalee soils are poorly drained, loam underlain by sandy loam and loam. The surface soils are strongly acidic and the subsoil can range from moderately acid to alkaline. Muckalee soils were formed from non-acidic parent material that was rich in calcium carbonate. Dorovan soils are muck that are very poorly drained and is strongly acidic. Dorovan soils have a high content of organic materials. Dorovan soils have formed by the accumulation of organic debris. The minor soils in this association are the Pactolus (Pa), Murville (Mu) and the Lafitte (La) muck.

Wando-Pactolus Association

Wando-Pactolus soils are found along the mainland adjacent to the coast. The association covers 3 percent of Onslow County. Wando-Pactolus soils are 53 percent Wando (Wo) soils, 39 percent Pactolus (Pa) soils and 7 percent other soils.

This association is located on the shores near Courthouse Bay, and along the intracoastal waterway and mainland bordering the waterway.

Wando soils are very well drained, gently sloping to nearly level, fine sands. These soils are slightly to moderately acidic. Pactolus soils are located on uplands and stream terraces and are poorly drained to moderately well drained soils. These soils are moderately to strongly acidic fine sands. Leon (Ln), Murville (Mu), Kureb (KuB) and Alpin (AnB) soils are minor constituents of this association. Pactolus sands were formed from the same material that the Leon, Murville and Kureb soils were formed.

Norfolk-Goldsboro-Onslow Association

Norfolk-Goldsboro-Onslow association soils are located primarily in the northwestern portion of Onslow County. This association is 24 percent Norfolk (NoA, NoB), 19 percent Goldsboro (GoA) and 15 percent Onslow (On) soils. The remainder is soils of minor extent.

At MCB, Camp Lejeune, this association is found along the southeast shore of the New River between Duck Creek and the peninsula west of Courthouse Bay and between Southeast Creek, Edwards Creek and U.S. Route 17 near MCAS.

Norfolk soils are located adjacent to drainage ways and on slightly convex slopes. They are well drained, strongly acidic, loamy fine sands at the surface underlain by sandy clay loam. The moderately well drained Goldsboro soils are fine sandy loams with sandy clay loam subsoils that are strongly acidic. They are located on convex divides. Onslow soils are poorly drained loamy fine sands over a sublayer of humus coated sand that is weakly cemented. This is underlain by sandy clay loam. Onslow soils are strongly acidic. The Norfolk, Onslow and Goldsboro soils formed from clay

rich sediment that was low in silt and sand. Autryville, Lenoir (Le) loam, Lynchburg (Ly) fine sandy loam, Grifton (Gt) fine sandy loam, Marvyn (MaC), Muckalee (Mk), Rains (Ra), and Craven (Cr) soils are also included in this association.

Bohicket-Newhan Association

The Bohicket-Newhan association covers 3 percent of Onslow County on the barrier islands and tidal marshes between the mainland and islands. Bohicket-Newhan soils consist of 55 percent Bohicket (Bo) soils and 20 percent Newhan (NeE) soils. The remainder of the association are the minor soils types Carteret (Ca), Yaupon (YaA) sandy loam, Corolla (Co) sand and Duckston (Dc) muck.

Located in tidal marshes, the nearly level Bohicket soils are very poorly drained, silty clay loams underlain by silty clay and loamy sand. Bohicket soils are slightly acidic to alkaline. Bohicket soils are mineral rich soils that were formed from sediment that had a high content of clay and silt but were continuously flooded by tides. Newhan soils form dunes and are nearly level to steep. These very well drained, mildly alkaline sands are located on the barrier islands. Newhan soils formed from the same parent material as the Leon, Murville and Kureb soils.

Croatan Association

In the northeastern and south-central portions of Onslow County, Croatan Association soils occur in circular depressions and interstream areas. Croatan (CrB) soils cover 8 percent of Onslow County and consist of 75 percent Croatan soils and 25 percent of minor soils of lesser extent. These minor soils include Murville (Mu), Pantego (Pn) mucky loam, Torhunta (To), and Leon (Ln) types.

This association is not found at MCB, Camp Lejeune, however individual soil types from this association are scattered throughout the base and occur in other soil associations.

Croatan soils are very poorly drained mucks underlain by mucky sandy loam, sandy clay loam and sandy loam. The Croatan soils are extremely acidic and nearly level. This soil type formed from thick accumulations of organic material.

Rains-Woodington-Torhunta Association

Fourteen percent of the soils in Onslow County are classified in the Rains-Woodington-Torhunta Associations. This association is present in large interstream areas in the north and some small areas

in the western side of Onslow County. The association is 37 percent Rains (Ra), 30 percent Woodington (Wo), 28 percent Torhunta (To) and 5 percent Pantego, Croatan, Murville, Stallings and Lynchburg. This association is not found at MCB, Camp Lejeune, however individual soil types from this association are scattered throughout the base and occur in other soil associations. Rains soils are strongly acidic, poorly drained, fine sandy loams at the surface underlain by a sandy clay loam subsoil. Rains soils are found in smooth, broad interstream areas. Woodington soils, also found in smooth, broad interstream areas, are strongly to extremely acidic, loamy fine sands underlain by fine sandy loams. Woodington soils are poorly drained. The very poorly drained, fine sandy loam, Torhunta soils occur in wide interstream areas. Torhunta soils are also strongly to extremely acidic. The major soils in this association formed from parent material that was rich in sand with low

to moderate amounts of clay.

\$61(G)

TEST BORING RECORD

PROJECT:	CT: MCB Camp Lejeune Base Background Study							
PROJ. NO.:	62470-37	1		BORING NO.:	BASE-BG01			
COORDINAT	ES:	EAST:	2462237.504	NORTH:	359952.604			
ELEVATION	SURFAC	E:						

Rig: Trip	ood Geoprobe				.				Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)		Water (Ft.)
Size (ID)	1.5"				7/11/00	6	Sunny	75	5.5
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

	5	SAMPLE T	YPE	D	EFINITIONS	
	$S = S_{I}$	olit Spoon	A = Auger	med = medium	ft or $' = feet$	
	T = SI	nelby Tube	W = Wash	v = very	bgs = below ground sur	face
	R = A	ir Rotary	C = Core	lt = light	MSL= mean sea level	
		enison]		dk = dark		
		N = No San	ple	NA= not applicable/not	available	
	Sam	ole Sample				Elevation
Depth (Ft.) Type			Visual Description		(Ft. MSL)
• `	No	. (Ft.,%)				
			SILTY SAND, fine, dk brown	, dry.		
1 7	S-1	. 1	BASE-BG01-00	collected at 0.0-1.0 ft, bgs		
		50%			1.8	
2 7 2	.0		SAND, v fine, lt grey, trace silt	, dry.	2.0	
]
3	S-2	2 2	SAND, fine, dk grey and black	, some silt, dry.		
		100%	BASE-BG01-02	collected at 3.5-5.5 ft, bgs	_]
4 74	.0]
			Note: silt content decreasing, w	ret at 5.5'.]
5	S-3	3 1.9]
		95%				j
6 6	.0				6.0	

DRILLING COMPANY Parratt-Wolff	BAKER REP.: James S. Culp	
DRILLER: Brian Waters and Jim Wheelin	BORING NO.: BASE-BG01 SH	EET 1 OF <u>1</u>

End of Boring at 6.0'

Baker

TEST BORING RECORD

DEFINITIONS

ft or ' = feet

Baker Environmental

PROJECT:	MCB	Camp	Leienne	Base	Background	Study

PROJ. NO.: 62470-371 BORING NO.: BASE-BG02

COORDINATES: EAST: 2479769.658 NORTH: 364124.576

ELEVATION SURFACE: NA

S = Split Spoon A = Auger

Rig: Tripe	Tripod Geoprobe								Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)		Water (Ft.)
Size (ID)	1.5"				7/13/00	8	Sunny	80	7.9
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

med = medium

Remarks:

		D DPILL	opcom r	~ ~~~~			
		T = Shelb	y Tube \	W = Wash	v = very	bgs = below ground sur	face
		R = Air F	Rotary	C = Core	lt = light	MSL = mean sea level	
		D = Denis	son I	P = Piston	dk = dark		
		N =	No Sam	ple	NA= not applicable/not	available	
		Sample	Sample				Elevation
Depth (Ft.)	Type &	Rec.		Visual Description		(Ft. MSL)
1 ^ `	. ,	No.	(Ft.,%)		-		
				SAND, fine, it brown, trace to	no silt, dry.		
1 -	1	S-1	1.2	Note: damp at 1.6'.			
			60%	BASE-BG02-00	collected at 0.0-1.0 ft, bgs		
2	2.0					$2.\overline{0}$	
				SAND, fine, brown and grey m	ottled, little silt, trace clay, damp	,	1
3		S-2	1.5	Note: iron staining.		-	
	1		75%			3.8	1
4	4.0						1
				SAND, fine, It grey, trace silt,	trace clay, damp. Note: iron stain	ing.	1
5		S-3	1.1	-	-	5.5	
-	1		55%				1
6	6.0			SAND, fine, brown and grey, to	race silt, trace clay, damp.	_	1
					• • •		1
7 -		S-4	1.2				1
-			60%	BASE-BG02-03	collected at 7.5-7.9 ft, bgs	7.5	1
8 -	8.0			CLAY, grey, trace silt, with me	· · · · · · · · · · · · · · · · · · ·	8.0	+
-			 	End of Boring at 8.0'			
-	1	1				_	1

DRILLING COMPANY Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin

BAKER REP.: James S. Culp

BORING NO.: BASE-BG02 SHEET 1 OF 1

Baker	Environmen	

PROJ. NO.: 62470-371 BORING NO.: BASE-BG03

363359.009 COORDINATES: EAST: 2481966.334 NORTH:

ELEVATION SURFACE:

Rig: Tripe	ripod Geoprobe								
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)		Water (Ft.)
Size (ID)	1.5"				7/13/00	6	Sunny	80	NA
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

SAMPLE TYPE		<u>DEFINITIONS</u>
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL = mean sea level
D = Denison $P = Piston$	dk = dark	
N = No Sample	NA= not applicable	/not available
0. 1 0. 1.		771

	N =	No Sam	ple NA= not applicable/not available	
	Sample	Sample		Elevation
Depth (Ft.)	Type &	Rec.	Visual Description	(Ft. MSL)
	No.	(Ft.,%)		
			SAND, fine, it brown, trace silt, trace roots, dry.]
	S-1	1	BASE-BG03-00 collected at 0.0-1.0 ft, bgs]
1		50%	_	
22.0				-
3	S-2	1.5	3.0	
		75%	_]
4 4.0			CLAY, brown and grey mottled, some silt, trace sand, damp.	
			Note: iron staining and root/organic material present.]
5	S-3	1	BASE-BG03-02 collected at 4.0-6.0 ft, bgs]
		50%		1
6 6.0			6.0	4
7			End of Boring at 6.0'	1
l ' - 				1 1
8 -			-	1
				1
9 -				1
	f			1
10]
]

DRILLING COMPANY Parratt-Wolff

BAKER REP .: James S. Culp

SHEET 1 OF 1 BORING NO.: BASE-BG03 Brian Waters and Jim Wheelin DRILLER:

Bakar

TEST BORING RECORD

Baker Environmental

PROJECT:	MCR	Camp L	eieune Base	e Background	Study

PROJ. NO.: 62470-371 BORING NO.: BASE-BG04

COORDINATES: EAST: 2469063.026 NORTH: 359364.058

ELEVATION SURFACE:

Rig: Tripe	od Geoprobe						Depth to	
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)	Water (Ft.)
Size (ID)	1.5"				7/11/00	6	Sunny 75	NA
Length	2.0'							
Туре	Stainless							
Hammer Wt.	NA							
Fall	NA							

Remarks:

SAMPLE TYPE	DE	FINITIONS
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level
D = Denison $P = Piston$	dk = dark	
N = No Sample	NA= not applicable/not a	vailable

	N :	= No Sam	pple NA= not applicable/not available	
	Sample	_		Elevation
Depth (Ft.		Rec.	Visual Description	(Ft. MSL)
ļ	No.	(Ft.,%)		
			SAND, fine, dk brown, little silt, dry.	_
	S-1	1.4	BASE-BG04-00 collected at 0.0-1.0 ft, bgs	
1 4		70%		-
22	.0		2	띡
3	S-2	0.8	SANTO fine annual of housest three little silk maint	-
'-	3-2	40%	SAND, fine, grey and it brown, trace-little silt, moist.	
4 4	.0	4076	BASE-BG04-02 collected at 3.5-5.5 ft, bgs 4.	<u></u>
				7
5	S-3	2	SAND, fine, It grey, trace silt, wet.]
1]		100%		_
6 6	.0		6.	의
			End of Boring at 6.0'	_
7 —			_	-
8				-
°				
9 -				-
1			-	-
10				7
1	1		_	7

DRILLING COMPANY Parratt-Wolff BAKER REP.: James S. Culp

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG04 SHEET 1 OF 1

Baker Environmenta	ı
--------------------	---

I NOJEC I. WICH CAMD ECICING DASC DACKRIUMU SING	PROJECT:	MCB Cami	Leieune Bas	e Background	Study
--	----------	----------	-------------	--------------	-------

PROJ. NO.: 62470-371

BORING NO.: BASE-BG05 COORDINATES: EAST: 2476054.307 NORTH: 357208.711

ELEVATION SURFACE: NA

Rig: Tripe	od Geoprobe							Depth to	
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weath	er	Water (Ft.)
Size (ID)	1.5"				7/13/00	6	Sunny	80	NA
Length	2.0'								
Туре	Stainless							***************************************	
Hammer Wt.	NA								
Fall	NA			***************************************	1		······································		

Remarks:

SAMPLE TYPE	<u>DEFINITIONS</u>				
S = Split Spoon A = Auger	med = medium	ft or ' = feet			
T = Shelby Tube W = Wash	v = very	bgs = below ground surf	face		
R = Air Rotary C = Core	lt = light	MSL= mean sea level			
D = Denison $P = Piston$	dk = dark				
N = No Sample	NA= not applicable/not available				
Sample Sample			Elevation		
	77' 1 The 1		OTHER RECT. N		

	14.	- 140 Dan	pic inva-not applicable/not available	
	Sample	Sample		Elevation
Depth (Ft.)	1	Rec.	Visual Description	(Ft. MSL)
	No.	(Ft.,%)		
			SAND, fine, It brown, trace silt, trace roots, dry.	
	S-1	1	BASE-BG05-00 collected at 0.0-1.0 ft, bgs	
		50%		
22.0)	<u> </u>	SAND, fine, brown, trace silt, dry. $\frac{2.0}{2.1}$	
3	S-2	1	SILTY CLAY, brown, trace fine sand, damp.	
1 , 4 , ,		50%	3.8	
4 4.0	<u>'</u>		CLAY, brown and grey, little silt, trace fine sand, damp.	
5	S-3	1.0		
	3-3	1.8 90%	BASE-BG05-02 collected at 4.0-6.0 ft, bgs	
6 6.0	,	90%	$6.\overline{0}$	
° 0.0	`	<u> </u>	End of Boring at 6.0'	1
7			End of Boring at 0.0	1
'				
8			_	
9 7			_	
				1
10			_	

DRILLING COMPANY Parratt-Wolff BAKER REP.: James S. Culp

BORING NO.: BASE-BG05 Brian Waters and Jim Wheelin SHEET 1 OF 1 DRILLER:

Broker

TEST BORING RECORD

DEFINITIONS

ft or ' = feet

10.0

	/ironmen	

PROJECT:	MCB	Camp	Leieune	Base	Background

PROJ. NO.: 62470-371 BORING NO.: BASE-BG06

COORDINATES: EAST: 2487311.381 NORTH: 361943.952

ELEVATION SURFACE: NA

SAMPLE TYPE

S = Split Spoon A = Auger

S-4

S-5

8.0

10.0

10

1.6 80%

1.7

85%

Note: wet at 9.7'.

End of Boring at 10.0'

Rig: Tripe	ripod Geoprobe							Depth to		
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weath	er	Water (Ft.)	
Size (ID)	1.5"				7/13/00	10	Sunny	80	9.7	
Length	2.0'									
Туре	Stainless									
Hammer Wt.	NA									
Fall	NA									

med = medium

Remarks:

	T = Shelb	y Tube \	W = Wash	v = very	bgs = below ground sur	face	
R = Air Rotary C = Core			C = Core ·	lt = light	MSL= mean sea level		
	D = Deni	son I	P = Piston	dk = dark			
	N =	= No Sam	ple	NA= not applicable/not	available		
	Sample	Sample				Elevation	
Depth (Ft.)	Type &	Rec.		Visual Description		(Ft. MSL)	
	No.	(Ft.,%)					
			SILTY SAND, fine, lt brown,	gravel intermixed in top 0.5', dry			
1	S-1	1	BASE-BG06-00	collected at 0.0-1.0 ft, bgs			
		50%			1.8		
2 2.0			SILT, fine, brown, trace fine sa	and, dry.			
3	S-2	1					
		50%					
4 4.0							
					4.5		
5	S-3	1.8	SAND, fine, It brown and grey,	, little silt, dry.			
		90%					
6 7 6.0							

DRILLING (COMPANY Parratt-Wolff	BAKER REP.: James S. Culp	
DRILLER:	Brian Waters and Jim Wheelin	BORING NO.: BASE-BG06	SHEET 1 OF 1

SAND, fine, It brown and grey, dry. Note: no silt, iron staining.

BASE-BG06-04 collected at 9.0-10.0 ft, bgs

PROJECT:	MCB	Camp Le	eieune Base	Background	Study
*******	~ ~ ~ ~ ~		ilemie mene	- Duving Curiu	-cuu,

PROJ. NO.: 62470-371 BORING NO.: BASE-BG07

COORDINATES: EAST: 2491127.672 NORTH: 363809.115

ELEVATION SURFACE: NA

Rig: Tripo	od Geoprobe								Depth to	
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	•		Water (Ft.)	
Size (ID)	1.5"				7/13/00	8	Sunny	80	8	
Length	2.0'									
Туре	Stainless								-	
Hammer Wt.	NA					······································				
Fall	NA									

Remarks:

SAMPLE TYPE		DEFINITIONS
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	NA= non-applicable
D = Denison $P = Piston$	dk = dark	MSL= mean sea level
N = No Sample	NA= not applicable/	not available
Sample Sample		Flevation

	N =	= No San	ple NA= not applicable/not available		
	Sample	Sample			Elevation
Depth (Ft.)	Type &	Rec.	Visual Description		(Ft. MSL)
	No.	(Ft.,%)			
1 4			SAND, fine, dk grey, some silt, dry.		
	S-1	1.2	BASE-BG07-00 collected at 0.0-1.0 ft, bgs		
		60%			
2 2.0				2.0	
			SAND, fine, grey, iron stained, trace-little silt, trace roots, dry-damp.		
3	S-2	2	Note: iron staining.		
		100%			
4 4.0					
5	S-3	1			
		50%		_	
6 6.0				6.0	
			BASE-BG07-03 and -03-DUP collected at 5.0-7.0 ft, bgs		
7	S-4	0.7	CLAYEY SAND, fine, lt grey, trace silt, moist to wet at 8.0'.		,
		35%			
8 8.0				8.0	
			End of Boring at 8.0'		
9				_	
10		<u> </u>		7	

DRILLING COMPANY Parratt-Wolff BAKER REP.: James S. Culp

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG07 SHEET 1 OF 1

4.0

6.0

8.0

10.0

10

S-3

S-4

S-5

1.9 95%

2 100%

2

100%

MCB Camp Lejeune Base Background Study

PROJECT:

TEST BORING RECORD

PROJ. NO.:	62470-37	1			BORING	NO.:	BASE-BG08		
COORDINAT	ES:	EAST:	2488712	.248	NORTH:	356993.67	3		
ELEVATION	SURFAC	E:	NA		_				
Rig: Inge	rsol-Rand	Truck Mo	ount						Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F) .	Water (Ft.)
Size (ID)	1.5"				7/16/00	12	Partly Cloudy	75	11
Length	2.0'								
Type	Stainless								
Hammer Wt.	NA								
Fall	NA								
Remarks:									
		IPLE TY				•	<u>EFINITIONS</u>		
	S = Split				med = me	dium	ft or ' = feet		
	T = Shelb	•			v = very		bgs = below groun		face
	R = Air F				lt = light		MSL= mean sea l	evel	
	D = Denis		P = Piston		dk = dark				
		No Sam	ple		NA= not a	pplicable/not	available		
	Sample	Sample							Elevation
Depth (Ft.)	Type &	Rec.			Visual	Description			(Ft. MSL)
	No.	(Ft.,%)							
			SAND, fine, tr	ace silt, grass re	oots (topsoil).	·		0.2]
1	S-1	2	I	BASE-BG08-0	O COLLECTE	D AT 0.0-1.0 ft, 1	gs		
		100%	SAND, fine, y	ellowish brown	, trace silt, damp).			
2 2.0									
3 —	S-2	1.3							

DRILLING COMPANY Parratt-Wolff	BAKER REP.: David Schilling
DRILLER: Arnie Chapel and Jesse Kaulferf	BORING NO.: BASE-BG08 SHEET 1 OF 2

Match to Sheet 2

SAND, fine, It grey, trace silt, moist.

Note: orange staining layers at 8.0'.

CLAY, yellowish brown, little fine sand, semi-plastic, damp.

Baker Environmental

PROJECT:

MCB Camp Lejeune Base Background Study

CTO NO.:

BORING NO.: 62470-371

BASE-BG08

SAMPLE TYPE **DEFINITIONS** S = Split Spoon A = Augermed = medium ft or ' = feetT = Shelby Tube W = Wash v = verybgs = below ground surface R = Air Rotary C = Corelt = light MSL= mean sea level D = Denison P = Piston N = No Sampledk = dark

Sample Sample Elevation Depth (Ft.) Type & Rec. Visual Description (Ft. MSL) No. (Ft.,%)

10			Match to Sheet 1		
_			BASE-BG08-05 COLLECTED AT 10.0-11.0 ft, bgs		
11	S-6	1.7		10.7	
1212.0		85%	SAND, fine, grey, semi-plastic, wet.	4	
12 12.0			End of Boring at 12.0'		
13				1	
14					
15					
16				二	
17				4	
17					
18_				-	
19					
20				-	
21					
 				4	
22					
23				-	
24					
25 _				-	
26					
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
27					
28				-	
29					

DRILLING COMPANY: Parratt-Wolff

DRILLER:

Arnie Chapel and Jesse Kaulferf

BAKER REP.:

David Schilling

BORING NO.:

BASE-BG08

SHEET 2 OF 2

Baker

TEST BORING RECORD

Baker		

PROJECT: MCB Camp Lejeune Base Backgrou

PROJ. NO.: 62470-371 BORING NO.: BASE-BG09

COORDINATES: EAST: 2501634.939 NORTH: 354858.386

ELEVATION SURFACE: NA

Rig: CME	35 Truck	Mount							Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date Progress (Ft.)		Weather (F)		Water (Ft.)
Size (ID)	1.5"				7/14/00	12	Sunny	85	11.9
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

SAMPLE TYPE		<u>DEFINITIONS</u>
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level

D = Denison P = Piston dk = dark

N = No Sample NA= not applicable/not available

i	1N	- 140 Sain	pie NA- not applicable/not available	
	Sample	Sample		Elevation
Depth (Ft.)	Type &	Rec.	Visual Description	(Ft. MSL)
	No.	(Ft.,%)		
	ļ ·		SAND, fine, grey, trace silt, dry.]
1	S-1	1.5	Note: color change to lt brown and trace gravel at 1.6'.	
		75%	BASE-BG09-00 COLLECTED AT 0.0-1.0 ft, bgs	
2 2.0				
1 4				
3	S-2	1.3	3.4	4
		65%	SAND, fine, brownish red, little silt, trace roots, damp.	4
4 4.0			4.0	
			_	-
5	S-3	1.6		
1 , 4 ,		80%	SAND, fine, It grey and tan, trace silt, damp.	
6 6.0			-	-
7	S-4	1.6	-	1
l ′⊢l	5-4	80%	Same, except, trace to no silt at 6.0'.	1
8 - 8.0		0076	_	1
0 0.0				1
9 -	S-5	1.3	-	-
'-	0-0	65%		
10 10.0		03/8	Same, except, trace clay at 9.3'.	1
10-10.0			Match to Sheet 2	1
L	l	L		

DRILLING COMPANY Parratt-Wolff BAKER REP.: James S. Culp

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG09 SHEET 1 OF 2

Baker Environmental

PROJECT:

MCB Camp Lejeune Base Background Study

CTO NO.:

62470-371

BORING NO.:

BASE-BG09

	SAN	IPLE TY	/PE	DE	FINITIONS	
	S = Split S			med = medium	ft or ' = feet	
	T = Shelb	v Tube V	V = Wash	v = very	bgs = below ground surf	ace
	R = Air F			lt = light	MSL= mean sea level	
D-			N = No Sample	dk = dark	WISE Mean sea rever	
10-	Sample		IN - INO Sample	Juk – daik		Elevation
D. 41 (T4)		Sample		TT ITS I Also		
Depth (Ft.)	Type &	Rec.		Visual Description		(Ft. MSL)
	No.	(Ft.,%)				
10				Match to Sheet 1	10.0	
4	1				4	
11	S-6	1.6	BASE-BG09-05	COLLECTED AT 10.0-12.0 ft,	bgs	
j _j		80%	Same, except wet at 11.9'			
12 12.0					12.0	
			End of Boring at 12.0'			
13					-	
14						
^		<u> </u>				
15						
"-						
1 , -						
16						
1						
17					Name and	

18					*	
19						
20						
21						
					-	
22						

23			,		******	
23 -					white the control of	,
] ,, -						
24						
25						
26					- Milyana Falik	

27						
28 _						
29 _						

DRILLING COMPANY: Parratt-Wolff

DRILLER:

Brian Waters and Jim Wheelin

BAKER REP.:

James S. Culp

BORING NO.: BASE-BG09 SHEET 2 OF 2

Baker

TEST BORING RECORD

Ra	kor	En	viro	nmėr	rtal
	41.00	į	VIIO	111119	

	PROJECT:	MCB Camp Lejeune Base Backgr	round Study
--	----------	------------------------------	-------------

PROJ. NO.: 62470-371 BORING NO.: BASE-BG10

COORDINATES: EAST: 2482035.305 NORTH: 354071.768

ELEVATION SURFACE: NA

Rig: Tripe	ig: Tripod Geoprobe								
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather	Depth to Water (Ft.)	
Size (ID)	1.5"				7/13/00	6	Sunny	80	NA
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

SAMPLE TYPE	<u>DE</u>	<u>FINITIONS</u>
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level
D = Denison $P = Piston$	dk = dark	
N = No Sample	NA= not applicable/not a	vailable

		14 -	- INO Dail	pie [NA- not applicable/not available	
Davida (1	C.4. \	Sample	Sample		Elevation
Depth (I	rt.)	Type & No.	Rec. (Ft.,%)	Visual Description	(Ft. MSL)
		140.	(11.,70)	SAND, fine, grey, trace silt, little roots, dry.	<u> </u>
		S-1	1.3	BASE-BG10-00 collected at 0.0-1.0 ft, bgs	1
			65%	_]
2	2.0			SAND, fine, brown, little-some silt, dry. 2.0	4
3 -		S-2	1.7		1
] 3 —		5-2	1.7 85%	SAND, brown, little silt, damp.	1
4	4.0		0370	_	1
5		S-3	1.8	5.0	
			90%	SAND, fine, white, no silt, damp.	
6	6.0	-n		BASE-BG10-02 collected at 5.0-6.0 ft, bgs 6.0	
7				End of Boring at 6.0'	1
'		H			
8 7				-	
]
9					
10				<u>-</u>	
"-					1

DRILLING COMPANY Parratt-Wolff BAKER REP.: James S. Culp

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG10 SHEET 1 OF 1

Braker

TEST BORING RECORD

Baker Environmental

PROJECT:	MCB	Camp	Lejeune	Base:	Back	ground	Study	

 PROJ. NO.:
 62470-371
 BORING NO.:
 BASE-BG11

 COORDINATES:
 EAST:
 2458611.130
 NORTH:
 349321.815

COORDINATES: EAST: 2458611.130 NORTH: 349
ELEVATION SURFACE: NA

Rig: Tripo	od Geoprol	эе					Weather (F)		Depth to Water (Ft.)
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)			
Size (ID)	1.5"				7/11/00	8	Sunny	75	NA
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

SAMPLE TYPE	<u>DE</u>	<u>FINITIONS</u>
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level
	dk = dark	
N = No Sample	NA= not applicable/not a	vailable

	Sample	Sample		Elevation
Depth (Ft.)	Type &	Rec.	Visual Description	(Ft. MSL)
	No.	(Ft.,%)		
_ =			SAND, fine, it brown, trace silt, dry.	-
	S-1	1.4	BASE-BG11-00 collected at 0.0-1.0 ft, bgs	
$_{2}$ $+$ $_{2.0}$		70%	_	
$\frac{2}{2}$ $\frac{2.0}{1}$	 			1 '
3	S-2	1.8	Note: trace-little silt.	1
~ 		90%		
4 7 4.0				
			Note: it brown-grey at 4.0'.	
5	S-3	1.4		
		70%	5.8	
6 6.0			CLAY, grey, little, fine, sand stringers, some silt, damp.	
		1,0	BASE-BG11-03 collected at 5.0-7.0 ft, bgs	-
7 —	S-4	1.3 65%	Note: moist at 6.0-8.0'.	
8 - 8.0		0376	8,0	-
		<u> </u>	End of Boring at 8.0'	
9	ļ]
				1
10			_	1
ı	1	İ		

DRILLING COMPANY Parratt-Wolff BAKER REP.: James S. Culp

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG11 SHEET 1 OF 1

PROJECT:	MCB	Camp	Leieune	Base	Background	Study

PROJ. NO.: 62470-371 BORING NO.: BASE-BG12

351910.395 COORDINATES: EAST: 2463291.244 NORTH:

ELEVATION SURFACE: NA

Rig: Tripe	Tripod Geoprobe								Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weath	er	Water (Ft.)
Size (ID)	1.5"				7/11/00	10	Sunny	75	9.7
Length	2.0'								
Type	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

SAMPLE TYPE	DE	FINITIONS
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level
D = Denison $P = Piston$	dk = dark	
N = No Sample	NA= not applicable/not a	vailable

		N =	No Sam	pie NA= not applicable/not available	
		Sample	Sample		Elevation
Depth (F	t.)	Type &	Rec.	Visual Description	(Ft. MSL)
		No.	(Ft.,%)		
	1			SAND, fine, It grey, trace silt, dry.	
]	S-1	1.8	SILT, fine, brown, little to some very fine sand, dry.	
	İ		90%	Note: silt content decreasing.	
2	2.0			BASE-BG12-00 collected at 0.0-1.0 ft, bgs	
				2.5	
3	I	S-2	1.5	SAND, It brown turning grey, some silt, dry.	
			75%	Note: silt content decreasing. 3.5	1
4	4.0			SAND, fine, It grey, trace silt, dry.	
]				<u> </u>	
5		S-3	2		
			100%	SAND, very fine, lt grey-white, trace silt, moist-damp.	
6	6.0				
				_	
7 _	- 1	S-4	1.7		
			85%		
8	8.0			-	
9		S-5	1.6	BASE-BG12-04 collected at 8.7-9.7 ft, bgs	
			80%	Note: wet at 9.7'.	
101	10.0			10.0	
				End of Boring at 10.0'	

DRILLING COMPANY Parratt-Wolff

BAKER REP.: James S. Culp BORING NO.: BASE-BG12

DRILLER: Brian Waters and Jim Wheelin SHEET 1 OF 1

Baker Environmental

PROJECT:	MCB	Camp	Leieune	BASE	Background	Study
----------	------------	------	---------	------	------------	-------

PROJ. NO.: 62470-371 **BORING NO.:** BASE-BG13

COORDINATES: EAST: 2460326.590 NORTH: 343563.813

Rig: Tripo	od Geoprol Split Spoon	Casing	asing Augers	Core Barrel	Date	Progress (Ft.)	Weathe	Weather (F)	
Size (ID)	1.5"				7/11/00	8	Sunny	85	NA
Length	2.0'								
Type	Stainless								
Hammer Wt.	NA								
Fall	NA								1
Remarks:	SAN	PLE TY	PE.	······································	·	D	EFINITIONS		
	S = Split S				med = med		ft or ' = feet		
	T = Shelby	-	•		v = very bgs = below ground surface			rface	
	R = Air R	Rotary	C = Core		lt = light		MSL= mean		
	D = Denis	son P	= Piston		dk = dark				

N = No SampleNA= not applicable/not available

	1/ -	- INO Sam	ipieint application int available	
	Sample	Sample	1	Elevation
Depth (Ft.)	Type &	Rec.	Visual Description	(Ft. MSL)
	No.	(Ft.,%)		
			SAND, fine, dk brown, trace-little silt, dry.	
1	S-1	1.7	SAND, fine, reddish brown, little-some silt, dry.	
		85%	BASE-BG13-00collected at 0.0-1.0 ft, bgs]
2 2.0			2.0	
			SILTY SAND, brown and grey, trace-little clay, damp.	
3	S-2	l	Note: clay content increasing with depth.]]
		50%	_]
4 4.0			4.0	
			CLAYEY SILT, trace sand, damp.	
5	S-3	1.6	5.5	
		80%	_	
6 6.0			CLAY, brown and grey, trace-little silt, trace sand, moist-wet]
			BASE-BG13-03 collected at 5.0-7.0 ft, bgs	
7	S-4	1	Note: moist at 6.0-8.0'.	}
		50%		
8 8.0			8.0	
			End of Boring at 8.0'	
9				1
10				
	ĺ			

DRILLING COMPANY Parratt-Wolff
DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG13 SHEET 1 OF 1

BAKER REP .: James S. Culp

TEST BORING RECORD

Baker Environmental

PROJECT:	MCB Cam	o Lejeune Base	Background Study

PROJ. NO.: 62470-371 BORING NO.:

BASE-BG14 COORDINATES: EAST: 2466021.828 NORTH: 349952.637

ELEVATION SURFACE: NA

Rig: Tripe	od Geoprol	oe .			Date	Progress (Ft.)			Depth to
	Split Spoon	Casing	Augers	Core Barrel			Weather	(F)	Water (Ft.)
Size (ID)	1.5"				7/12/00	4	Cloudy	75	3.8
Length	2.01								
Туре	Stainless								
Hammer Wt.	NA							***************************************	
Fall	NA								1

Remarks:

SAMPLE TYPE	<u>DEFI</u>	NITIONS	
S = Split Spoon A = Auger	med = medium ft	or' = feet	
T = Shelby Tube W = Wash	v = very bg	s = below ground surf	ace
R = Air Rotary C = Core	lt = light M	SL= mean sea level	
D = Denison $P = Piston$	dk = dark		
N = No Sample	NA= not applicable/not avai	lable	
Sample Sample			Elevation

			7	
Depth (Ft.)	Sample Type &	Sample Rec.	Visual Description	Elevation (Ft. MSL)
- 1 ()	No.	(Ft.,%)	Visual B oscription	(I t. IVISL)
1 _	S-1	1.2	SAND, fine, dk brown, little silt, trace roots, dry.	
2		60%	BASE-BG14-00 collected at 0.0-1.0 ft, bgs	
3	S-2	1		
4 4.0		50%	BASE-BG14-01 collected at 3.0-4.0 ft, bgs Wet at 3.8'. 4.0	
5 _			End of Boring at 4.0'	
6				
7 _				
8				
9 _				
10				

DRILLING COMPANY Parratt-Wolff

BAKER REP.: James S. Culp Brian Waters and Jim Wheelin DRILLER: BORING NO.: BASE-BG14 SHEET 1 OF 1

2010

TEST BORING RECORD

Baker Environmental

PROJECT:	MCB Camp I	Lejeune Base Background	Study		
PROT NO ·	62470-371		BODING NO .	BASE-BG15	

COORDINATES: EAST: 2493167.954 NORTH: 351762.190

ELEVATION SURFACE: NA

Rig: Ingersol-Rand Truck Mount								Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)	Water (Ft.)
Size (ID)	1.5"			<u> </u>	7/16/00	12	Partly Cloudy 75	9
Length	2.0'							
Туре	Stainless							
Hammer Wt.	NA							
Fall	NA							

Remarks:

SAMPLE TYPE	İ	<u>DEFINITIONS</u>
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = verv	has = helow around surf

T = Shelby Tube W = Wash
R = Air Rotary C = Core
v = very
bgs = below ground surface
lt = light
MSL= mean sea level

D = Denison P = Piston dk = dark

N = No Sample NA= not applicable/not available

11 - 110 Sam			pie INA- not applicable/not available		
Depth (Ft.) Sample Sample Type & Rec. No. (Ft.,%)			Visual Description		
		1			
_			SAND, fine, trace silt, grass roots (topsoil).		
	S-1	0.9	BASE-BG15-00 COLLECTED AT 0.0-1.0 ft, bgs		
		45%	SAND, fine, dk greyish brown, trace silt, damp.	1	
2 2.0				-	
3	S-2	1.3	-	1	
3 -	3-2	65%	_	1	
4 4.0		0570	4.0	1	
			CLAY, grey with orange mottling, trace fine sand, semi-plastic, damp.]	
5	S-3	0.7		4	
6 6.0		35%	BASE-BG15-03 COLLECTED AT 5.0-6.0 ft, bgs	1	
0 0.0			$\overline{7.1}$		
7 _	S-4	2	CLAY, and SAND, fine, grey, semi-plastic, damp.	1	
		100%	_]	
8 8.0			8.0		
_	9.5		CLAY, grey with orange mottling, some fine sand, semi-plastic, moist.		
9	S-5	2	BASE-BG15-06 COLLECTED AT 8.0-9.0 ft, bgs	-	
10 - 10.0		100%	$10.\overline{0}$	1	
			Match to Sheet 2	1	

DRILLING COMPANY Parratt-Wolff

DRILLER: Arnie Chapel and Jesse Kaulferf

BAKER REP.: David Schilling

BORING NO.: BASE-BG15 SHEET 1 OF 2

PROJECT:

MCB Camp Lejeune Base Background Study
62470-371
BO

CTO NO ·

CTO NO.:	62470-371			BORING NO.:	BASE-BG15	
	SAN	APLE TY	PE.	DE	FINITIONS	
	S = Split			med = medium	ft or ' = feet	
	T = Shelby Tube W = Wash			v = very	bgs = below ground surf	ace
R = Air Rotary C = Core			C = Core	lt = light	MSL= mean sea level	
D=	Denison P	= Piston	N = No Sample	dk = dark		
T	Sample	Sample	·			Elevation
Depth (Ft.)	Type &	Rec.	Visual Description			(Ft. MSL)
10	No.	(Ft.,%)		26 4 1 4 61 4 4		
10		}		Match to Sheet 1		
11	S-6	2	CLAY, interbedded sand layers	s blueich grey plactic wet	-	
1 11-1	5-0	100%	CLIAI, marouded said layers	s, blueish grey, plastic, wee		
12 12.0		}			12.0	
			End of Boring at 12.0'			
13					·	
14					-	
15						
16		ļ				
16						ĺ
17						
1 1 -						
18						
		i				
19						
20						
0.1					- -	
21					******	
22						
23						
24					no pri	
25 _						
26						
] ,,,						
27						
28						
20						
29						

DRILLING COMPANY: Parratt-Wolff

DRILLER:

Arnie Chapel and Jesse Kaulferf

BAKER REP.:

David Schilling

BORING NO.: BASE-BG15

SHEET 2 OF 2

PROJECT:	MCB	Camp	Leienne	Base	Background	Study
TICOUTOI.	***	Camp	Lojouno	Lase	Dackeround	Stuuv

PROJ. NO.: 62470-371 **BORING NO.:** BASE-BG16

COORDINATES: EAST: 2489753.293 NORTH: 345423.123 **ELEVATION SURFACE:** NA

Rig: Tripod Geoprobe Depth to Split Casing Core Date Augers **Progress** Weather (F) Water Spoon Barrel (Ft.) (Ft.) Size (ID) 1.5" 7/13/00 8 Sunny 80 8 Length 2.0' Type Stainless Hammer Wt. NA Fall NA

Remarks:

SAMPLE TYPE		DEFINITIONS
S = Snlit Snoon A = Auger	mad - madium	G !

S = Split Spoon A = Augermed = mediumft or ' = feet

T = Shelby Tube W = Washv = verybgs = below ground surface R = Air Rotary C = Corelt = light MSL= mean sea level

D = DenisonP = Pistondk = dark

> N = No SampleNA= not applicable/not available

Sample Sample				
Depth (Ft.) Type & Rec.	Virgal Description	Elevation (Ft. MSL)		
No. (Ft.,%)	Visual Description			
	brown, some silt, dry.			
	BASE-BG16-00 collected at 0.0-1.0 ft, bgs			
65%	1.8			
2 2.0 SILT, fine, re-	ddish brown, trace sand, trace clay, dry-damp. 2.0			
	race silt, damp.			
4 4.0				
4 4.0	4.0			
5 S-3 2				
	hite-brown, damp.			
6 6.0	_			
	fine grained at 5.7 becoming more brown in color.F60			
7 S-4 1.5				
	BASE-BG16-03 collected at 7.0-8.0 ft, bgs			
	8.0			
End of Boring	at 8.0'			
	· · ·			
10	-			
		ļ		

DRILLING COMPANY Parratt-Wolff

BAKER REP .: James S. Culp DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG16 SHEET 1 OF 1

Baker Environmental

PROJECT:	MCB	Camp Le	jeune Base	Background	Study

PROJ. NO.: 62470-371 BORING NO.: BASE-BG17

COORDINATES: EAST: 2493294.734 NORTH: 345170.674

ELEVATION SURFACE: NA

Rig: Trip	od Geoprol	be			Date	Progress (Ft.)			Depth to
	Split Spoon	Casing	Augers	Core Barrel			Weathe	r (F)	Water (Ft.)
Size (ID)	1.5"				7/13/00	10	Sunny	80	9.9
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

SAMPLE TYPE	<u>DE</u>	<u>FINITIONS</u>
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level
D = Denison P = Piston	dk = dark	
N = No Sample	NA= not applicable/not av	vailable

		110 200	2.4.2. 1.00 application at the action	i
	Sample	Sample		Elevation
Depth (Ft.)	Type &	Rec.	Visual Description	(Ft. MSL)
	No.	(Ft.,%)		
			SAND, fine, It brown, trace to no silt, dry.	
1	S-1	1.2	BASE-BG17-00 collected at 0.0-1.0 ft, bgs	<u> </u>
		60%	2.0]
2 2.0]
			_	_
3	S-2	1.4	SAND, fine, it brown, trace silt, damp.	1
		70%	_	_[
4 4.0				1
			_]
5	S-3	1.8		1
		90%	Note: color change to white.]
6 6.0]
			_] [
7	S-4	1.3	BASE-BG17-04, -04-DUP, -04-MS/MSD collected at 7.0-9.0 ft, bgs	1
		65%	7.5	1
8 8.0			CLAY, fine, it grey with iron staining, trace fine sand, little silt, damp-moist.	4 1
			<u>-</u>	1
9	S-5	1.1	9.0	4
		55%	SAND, fine, it grey, trace silt, moist to wet at 9.9'.	1 1
10 10.0			10.0	
			End of Boring at 10.0'	

DRILLING COMPANY Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG17 SHEET 1 OF 1

BAKER REP.: James S. Culp

Baker	Envi	ront	nen	e l

PROJECT:	MCB	Camp	Leieune	Base	Background	Study

PROJ. NO.: 62470-371 **BORING NO.:** BASE-BG18

2504053.122 COORDINATES: EAST: NORTH: 350332.206

ELEVATION SURFACE: NA

Rig: Tripe	od Geoprol	be				Progress (Ft.)			Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date		Weathe	r (F)	Water (Ft.)
Size (ID)	1.5"				7/14/00	6	Sunny	80	5
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

SAMPLE TYPE		<u>DEFINITIONS</u>	
S = Split Spoon A = Auger	med = medium	ft or ' = feet	
T = Shelby Tube W = Wash	v = very	bgs = below ground surface	
R = Air Rotary C = Core	lt = light	MSL= mean sea level	
D = Denison $P = Piston$	dk = dark		
N = No Sample	NA= not applicable/	not available	
C1. C1.		1	

	TA _	- INU Dail	pic [NA- not applicable/not available	
	Sample	Sample		Elevation
Depth (Ft.)	Type &	Rec.	Visual Description	(Ft. MSL)
	No.	(Ft.,%)		
	۱		SAND, fine, grey, trace silt, little roots, dry.	4
1 🚽	S-1	1.6	BASE-BG18-00 collected at 00-1.0 ft, bgs 1.0	
		80%		
2 2.0			SAND, fine, brown, iron staining prevalent, trace to no silt, dry.	
<u>,</u>		1.0	<u>-</u>	4
3	S-2	1.9	Note: no iron staining and tan in color at 2.0'.	-
4 4		95%	_	1
4 4.0	<u> </u>			-
5	S-3	1	BASE-BG18-02, -02-DUP and -02-MS/MSD collected at 3.0-5.0 ft, bgs	-
³ –	3-3	50%	NV.4.4.5.01	-
$\frac{1}{6}$		30%	Wet at 5.0'. $6.\overline{0}$	1
0.0				
7			End of Boring at 6.0'	4
′ →				-
8			_	-
$^{\circ}$ \dashv				-
9 -			_	1
9 —			<u></u>	-
10			<u> </u>	-
10 — I				-
	i	î		1

DRILLING COMPANY Parratt-Wolff

BAKER REP.: James S. Culp BORING NO.: BASE-BG18 DRILLER: Brian Waters and Jim Wheelin SHEET 1 OF 1

\$1000

TEST BORING RECORD

Baker Environmental

PROJECT:	MCB	Camp	Leieune	Base	Background	Study

PROJ. NO.: 62470-371 BORING NO.: BASE-BG19
COORDINATES: EAST: 2503007.750 NORTH: 342108.143

ELEVATION SURFACE: NA

Rig: Tripe	ripod Geoprobe								Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)		Water (Ft.)
Size (ID)	1.5"				7/14/00	8	Sunny	85	8
Length	2.0'								<u> </u>
Туре	Stainless							······································	
Hammer Wt.	NA					*			
Fall	NA						T1		†

Remarks:

SAMPLE TYPE	DEFINITIONS
S = Split Spoon A = Auger	med = medium ft or ' = feet
T = Shelby Tube W = Wash	v = very bgs = below ground surface
R = Air Rotary C = Core	It = light MSL= mean sea level
D = Denison $P = Piston$	dk = dark
N = No Sample	NA= not applicable/not available
G1- G1-	

			1111 Not applicable, not available				
	Sample	Sample		Elevation			
Depth (Ft.)	Type &	Rec.	Visual Description				
	No.	(Ft.,%)					
_		İ	SILT, grey, little fine sand, trace gravel, dry.				
1	S-1	1.5	BASE-BG19-0 collected at 0.0-1.0 ft, bgs 1.0				
		75%	_				
2 2.0			SILT, fine, brown, trace fine sand, dry.				
3	S-2	1.8	Note: brown and tan with iron staining at 2.0'				
		90%		i i			
4 4.0							
4							
5	S-3	1	5.0				
_		50%	CLAY, It grey, little silt, trace fine sand, damp. 5.5				
6 6.0							
	_		SAND, fine to v fine, white, no silt, damp.				
⁷ —	S-4	1.3	6.7				
		65%	BASE-BG19-03 collected at 7.0-8.0 ft, bgs				
8 8.0			SAND, fine, tan and grey, trace silt, moist to wet at 8.0'.				
4			End of Boring at 8.0'				
9 _							
10							

BAKER REP .: James S. Culp

SHEET 1 OF 1

DRILLING COMPANY Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG19

		~	-		a
PROJECT:	MCB Camp	Leieime	Base F	3ackground	Study

PROJ. NO.: 62470-371 BORING NO.: BASE-BG20

COORDINATES: EAST: 2519657.520 NORTH: 353053.611

ELEVATION SURFACE: NA

Rig: CMF	E-35 Truck	35 Truck Mount							
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather	r (F)	Water (Ft.)
Size (ID)	1.5"				7/16/00	8	Sunny	85	3.5
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								<u> </u>

Remarks:

SAMPLE TYPE	D	<u>EFINITIONS</u>
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level
D = Denison $P = Piston$	dk = dark	
N = No Sample	NA= not applicable/not a	available

	N =	= No Sam	ple NA= not applicable/not available	;	
	Sample	Sample		-	Elevation
Depth (Ft.)	Type &	Rec.	Visual Description		(Ft. MSL)
	No.	(Ft.,%)			
			SAND, fine, it brown becoming mottled with it grey, trace silt, trace,	_	
I	S-1	1.6	organics (roots) dry.		
		80%	BASE-BG20-00 collected at 0.0-1.0 ft, bgs		
2 2.0			Same except lt grey mottled with dk brown		
			BASE-BG20-01 collected at 2.0-3.0 ft, bgs	2. <u>6</u>	
3	S-2	1.3	SAND, fine, grey-brown, little-some clay, trace organics (roots), moist.		
		65%		3.4	
4 4.0			SAND, fine, brown, some silt, trace clay, some organics (roots), wet at 3.5	4.0	
			PEAT, black-brown, some fine sand, wet.	_	
5	S-3	2			
		100%		5.2	
6 6.0					
			SAND, fine, it grey mottled with orange-yellow becoming yellow-brown, w	et.	
7	S-4	2			
		100%		_	
8 8.0				8.0	
			End of Boring at 8.0'		
9 —					
				_	
10					

DRILLING COMPANY Parratt-Wolff BAKER REP.: Nathanael Barta

DRILLER: Louis Lefever and Justin Abreu BORING NO.: BASE-BG20 SHEET 1 OF 1

Balker

TEST BORING RECORD

Бак	1691	VIIO	ше	на

PR	0	JECT:	MCB	Camp	Leienne	Base	Background	Study
7/		JLC 1.	IVICIO		Lolomic		TACOITE LOCKING	Diuu

BORING NO.: BASE-BG21 PROJ. NO.: 62470-371

COORDINATES: EAST: 2514315.169 NORTH: 337605.836

ELEVATION SURFACE: NA

Rig: Tripo	od Geoprol	be					Weather (F)		Depth to Water (Ft.)
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)			
Size (ID)	1.5"				7/15/00	6	Sunny	80	5
Length	2.0'						storm		
Туре	Stainless						approaching		
Hammer Wt.	NA								
Fall	NA								

Remarks:

		APLE T			EFINITIONS	·		
D	-	-	A = Auger	med = medium	ft or ' = feet			
		•	W = Wash	v = very	bgs = below ground surface			
		•	C = Core	lt = light	MSL= mean sea level			
	D = Denis		P = Piston	dk = dark				
		No Sam	^	NA= not applicable/not	available	_		
	Sample	Sample				Elevation		
Depth (Ft.)	Type &			Visual Description		(Ft. MSL)		
	No.	(Ft.,%)			#44			
	_		SAND, fine, grey, trace silt, dr	y.				
	S-1	1.4	BASE-BG21-00	collected at 0.0-1.0 ft, bgs				
		70%		1 <u>.8</u>				
2 2.0			SILTY SAND, fine, brown, da	<u>mp.</u>	<u> 2.0</u>			
					•••			
3	S-2	1.8	SAND, fine, It brown, little to to	race silt, damp.				
.		90%			<u>3.8</u>			
4 4.0			CLAY, lt grey, some sand, trac		4.0			
	~ -	_	SAND, fine, It grey, trace silt, to	• .				
5	S-3	1		collected at 4.0-5.0 ft, bgs		1		
		50%	SAND, fine, It brown,trace silt,	wet at 5.0'.	, ,			
6 6.0					6.0			
			End of Boring at 6.0'		_			
7 _					AFFURNI			
					_			
8								
9 _								

DRILLING COMPANY Parratt-Wolff

Brian Waters and Jim Wheelin DRILLER:

BAKER REP.: James S. Culp
BORING NO.: BASE-BG21

SHEET 1 OF 1

Balker

TEST BORING RECORD

Bake		

PROJECT:	MCB	Camp	Leieune	Base	Background	l Study

 PROJ. NO.:
 62470-371
 BORING NO.:
 BASE-BG22

 COORDINATES:
 EAST:
 2499714.837
 NORTH:
 342147.125

ELEVATION SURFACE: NA

Rig: Tripe	od Geoprol	be							Depth to Water (Ft.)
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress Weather (F) (Ft.)		r (F)	
Size (ID)	1.5"				7/14/00	10	Sunny	85	9.8
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

SAMPLE TYPE	<u>DEFINITIONS</u>				
S = Split Spoon A = Auger	med = medium	ft or ' = feet			
T = Shelby Tube W = Wash	v = very	bgs = below ground surface			
R = Air Rotary C = Core	lt = light	MSL= mean sea level			
D = Denison $P = Piston$	dk = dark				
N = No Sample	NA= not applicable/not a	vailable			

	N =	= No Sam	nple NA= not applicable/not available	
	Sample	Sample		Elevation
Depth (Ft.)	Type &	Rec.	Visual Description	(Ft. MSL)
<u></u>	No.	(Ft.,%)		
			SAND, fine, grey, dry.	
	S-1	1.5	BASE-BG22-00 collected at 0.0-1.0 ft, bgs 1.0	
1		75%	_	
2	ļ	<u> </u>	SAND, fine, brown, little silt, dry.	
3	6.2	1.0	_	
] 3 —	S-2	1.6 80%	Note: tree roots and iron staining at 2.0'	1
4 - 4.0		00%	_	-
7 7.0	 	 	4.5	1
5	S-3	1		†
		50%	SILT, grey, little clay, trace sand, damp.	1
6 6.0			_	
			•	
7	S-4	1.3		
		65%	7.8]
8 8.0			SAND, fine, white, damp to wet at 9.8'.	
			_]
9	S-5	1.2	BASE-BG22-04 collected at 8.5-9.5 ft, bgs	
		60%	_	1
10 10.0			Wet at 9.8'. 10.0	
		i	End of Boring at 10.0'	1

DRILLING COMPANY Parratt-Wolff BAKER REP.: James S. Culp

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG22 SHEET 1 OF 1

TEST BORING RECORD

Baker Environmental

MCB Camp Lejeune Base Background Study PROJECT:

BASE-BG23 BORING NO.: PROJ. NO.: 62470-371

COORDINATES: EAST: 2460513.902 NORTH: 341789.258

NA **ELEVATION SURFACE:**

Rig: Tripo	od Geoprol	robe							Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)		Water (Ft.)
Size (ID)	1.5"				7/11/00	6	Sunny	75	4.8
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

			MPLE T		D	<u>EFINITIONS</u>			
				A = Auger	med = medium	ft or ' = feet			
				W = Wash	v = very	bgs = below ground sur	face		
			-	C = Core	lt = light	MSL= mean sea level			
		D = Denis		P = Piston	dk = dark				
		N =	No Sam		NA= not applicable/not	available			
		Sample	Sample				Elevation		
Depth ((Ft.)	Type &	Rec.		Visual Description		(Ft. MSL)		
	·	No.	(Ft.,%)						
				AND, fine, dk brown, trace silt, trace to little roots, dry. 0.5					
1_		S-1	1.4	BASE-BG23-00 collected at 0.0-1.0 ft, bgs					
-			70%	AND, fine, brown, trace silt, dry.					
2 _	2.0								
_				BASE-BG23-01 collected at 1.0-3.0 ft, bgs					
3		S-2	0.9	Note: Wet at 3.5', color change	Note: Wet at 3.5', color changes to grey.				
			45%			_			
4 —	4.0					4.0	-		
				CYT M 1241 C 1 4	*	4.8	-		
5		S-3	2	SILT, grey, little fine sand, tra	ce clay, wet.				
	()		100%			$6.\overline{0}$	-		
6	6.0			F 1 6F 1 160		0.0			
	1			End of Boring at 6.0'			1		
7							-		
8 -						_			
8 —									
9 -						-	1		
9 —							1		
10 -						_	-		
10				1		-	4		

DRILLING COMPANY Parratt-Wolff

Brian Waters and Jim Wheelin DRILLER.

BAKER REP.: James S. Culp
BORING NO.: BASE-BG23

SHEET 1 OF 1

\$21/G

TEST BORING RECORD

DEFINITIONS

BAKER REP.: James S. Culp

ft or ' = feet

Baker Environmental

PROJECT: MCB Camp Lejeune Base Background	PROJECT:	MCB Can	no Leieune	Base 1	Background	Study
---	----------	---------	------------	--------	------------	-------

SAMPLE TYPE

S = Split Spoon A = Auger

PROJ. NO.: 62470-371 BORING NO.: BASE-BG24

COORDINATES: EAST: 2471163.182 NORTH: 337823.832

ELEVATION SURFACE: NA

Rig: Tripo	od Geoprol	Geoprobe							Depth to	
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress Weather (F) (Ft.)		r (F)	Water (Ft.)	
Size (ID)	1.5"				7/12/00	4	Cloudy	75	3	
Length	2.0'									
Туре	Stainless									
Hammer Wt.	NA									
Fall	NA			-						

med = medium

Remarks:

i e		~ ~F	-r				1	
		T = Shelb	y Tube V	W = Wash	v = very	bgs = below ground sur	face	
		R = Air F	Rotary	C = Core	lt = light	MSL= mean sea level		
		D = Denis	son I	P = Piston	dk = dark		i	
		N =	No Sam	ple	NA= not applicable/not	available		
		Sample	Sample				Elevation	
Depth	(Ft.)	Type &	Rec.		Visual Description			
•	` /	No.	(Ft.,%)		*			
	1			ILT, fine, dk brown, little fine sand, some roots, dry.				
1		S-1	1	BASE-BG24-00	BASE-BG24-00 collected at 0.0-1.0 ft, bgs			
			50%	AND, fine, lt grey, trace to no silt, damp.				
2	2.0			$2.\overline{0}$				
				BASE-BG24-01	BASE-BG24-01 collected at 2.0-3.0 ft, bgs			
3	1	S-2	2	SAND, fine dk brown, little sil	t, moist to wet at 3.0'.			
	1		100%					
4	4.0					4.0		
				End of Boring at 4.0'				
5]							
6								
7 _								
						_		
8						were		
	1	ł	1	1			i !	

DRILLING COMPANY Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG24 SHEET 1 OF 1

Bolker

TEST BORING RECORD

Baker Environmental

PROTECT:	MCP Comp	Leieune Base	Rackground	Study
PROJECT:	WILL STAMP	Leieune base	ъяскутонна	SINGV

PROJ. NO.: 62470-371 BORING NO.: BASE-BG25

COORDINATES: EAST: 2496298.395 NORTH: 333823.581

ELEVATION SURFACE: NA

Rig: Tripe	od Geopro	be	***************************************			Progress (Ft.)			Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date		Weather	(F)	Water (Ft.)
Size (ID)	1.5"				7/14/00	4	Cloudy	75	4.1
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

SAMPLE TYPE		<u>DEFINITIONS</u>
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level
D = Denison $P = Piston$	dk = dark	
N = No Sample	NA= not applicable/	not available
0 1 0 1		2711

N = No Sam		= No San	nple NA= not applicable/not available	
Depth (Ft	Sample .) Type &	Rec.	Visual Description	Elevation (Ft. MSL)
	No.	(Ft.,%)		
			SAND, fine, grey, trace silt, little roots, dry.	
1	S-1	1.1	BASE-BG25-00 collected at 0.0-1.0 ft, bgs	
		55%		
22	.0	<u> </u>	2.0	
3 -	S-2	1.3	SAND, fine, brown, damp.	
		65%	BASE-BG25-01 collected at 3.0-4.0 ft, bgs	1
4 4	.0		Wet at 4.1'. 4.0]
5			End of Boring at 4.0'	
				1 1
6			_	-
7			-	1
			_	1
8 7			· -	
1 7]
9 _]
]
10				1
1 1				

DRILLING COMPANY Parratt-Wolff BAKER REP.: James S. Culp

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG25 SHEET 1 OF 1

Bolker

TEST BORING RECORD

DEFINITIONS

Baker Environmental

PROJECT:	MCB Camp	Leieune Base	Background	Study
I KOJECI.	MUD Camp	LCICILIC Dasc	L'acide dunce	Diam

SAMPLE TYPE

PROJ. NO.: 62470-371 BORING NO.: BASE-BG26

COORDINATES: EAST: 2504445.691 NORTH: 335468.524

ELEVATION SURFACE: NA

Rig: Tripe	od Geoprol	oe .							Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weathe	r (F)	Water (Ft.)
Size (ID)	1.5"				7/14/00	6	Sunny	85	5.8
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

1	SANIFLETTE			<u>i i i i i</u>	DEFEITIONS		
		S = Split	Spoon A	A = Auger	med = medium	ft or ' = feet	
		T = Shelb	y Tube \	W = Wash	v = very	bgs = below ground sur	rface
		R = Air I	Rotary	C = Core	lt = light	MSL = mean sea level	
		D = Deni	son I	P = Piston	dk = dark		
		N=	No Sam	ple	NA= not applicable/no	t available	
		Sample	Sample				Elevation
Depth (Ft.)	Type &	Rec.		Visual Description		(Ft. MSL)
		No.	(Ft.,%)				
_				SAND, fine, It grey, trace to no	silt, trace roots, dry.	_	4
1		S-1	1	BASE-BG26-00	collected at 0.0-1.0 ft, bgs	_	_
			50%			1.8	4
2	2.0						4
				SILT, brown, trace sand, dry.			4
3 _		S-2	1.5			3.0	2
] _			75%				4
4	4.0			SAND, fine, It brown, trace silt		_	-
			_	Note: color change to it grey an		_	-{
5		S- 3	1	BASE-BG26-02	collected at 5.0-5.8 ft, bgs	_	-
			50%			, ,	.
6	6.0			Wet at 5.8'.		6.0	4
				End of Boring at 6.0'		-	-
7						-	4
_			· -			-	-
8							-{
						_	-
9							-
10 -						-	-

DRILLING COMPANY Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin

BAKER REP .: James S. Culp

BORING NO.: BASE-BG26 SHEET 1 OF 1

	ке			nen	

PROJECT:	MCB Camp Lejeune Base Background Study

 PROJ. NO.:
 62470-371
 BORING NO.:
 BASE-BG27

 COORDINATES:
 EAST:
 2506284.648
 NORTH:
 335649.456

ELEVATION SURFACE: NA

Rig: Tripe	od Geoprol	be	····						Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather	r (F)	Water (Ft.)
Size (ID)	1.5"				7/14/00	12	Sunny	85	NA
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA						ļ		
Fall	NA								

Remarks:

SAMPLE TYPE		<u>DEFINITIONS</u>	
S = Split Spoon A = Auger	med = medium	ft or ' = feet	
T = Shelby Tube W = Wash	v = very	bgs = below ground surface	
R = Air Rotary C = Core	lt = light	MSL= mean sea level	
D = Denison $P = Piston$	dk = dark		
N = No Sample	NA= not applicable/not available		

N = No Sample NA= not applicable/not available					
	Sample	Sample		Elevation	
Depth (Ft.)	Type &	Rec.	Visual Description	(Ft. MSL)	
	No.	(Ft.,%)			
			SAND, fine, it grey, trace silt, trace roots, dry.	4	
	S-1	1	Note: color change to brown at 1.8'.	_	
	ļ	50%	BASE-BG27-00 COLLECTED AT 0.0-1.0 ft, bgs	-	
22.0				-	
		,,	-		
3	S-2	1.1 55%		-	
4 - 4.0	İ	33%	-	1	
4 4.0	 		-	1	
5	S-3	1.4	Same, except iron staining at 4.0-6.0'.		
]]		70%		1	
6 6.0	ļ		-	-	
				1	
7	S-4	1.3	Same, except damp.		
		65%			
8 38.0		İ			
9 _	S-5	1.6	Same, except damp-moist at 8.0'.]	
		80%	BASE-BG27-05 COLLECTED AT 9.0-10.0 ft, bgs	1	
10 10.0			_	4	
	1	ł	Match to Sheet 2	1	

DRILLING COMPANY Parratt-Wolff BAKER REP.: James S. Culp

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG27 SHEET 1 OF 2

Bakar

Baker Environmental

TEST BORING RECORD

PROJECT:

MCB Camp Lejeune Base Background Study

CTO NO.: 62470-371 BORING NO.: BASE-BG27

010110	02-170			20141101101		
	SAN	PLE TY	PF.	DE	<u>FINITIONS</u>	
					ft or ' = feet	
				med = medium		I
1	T = Shelby	y Tube W	V = Wash	v = very	bgs = below ground surfa	ace
	R = Air R			lt = light		
77-	Donison D	- Diaton	N = No Sample	dk = dark		
D =			N = No Sample	Juk – uark		771
	Sample	Sample			·	Elevation
Depth (Ft.)	Type &	Rec.		Visual Description		(Ft. MSL)
1 ` ` ′	No.	(Ft.,%)		-		}
10	110.	(1 (., 7 0)		36.1	10.0	
10				Match to Sheet 1	10.0	
		Ì				
11	S-6	1.2				
		60%	Same			
12 12.0					12.0	
12 12.0					12.0	
			End of Boring at 12.0'			
13						
		l				l
14			,			[
14—						
15						
16						
l '°⊢		Ì				
ll						
17					*****	
1 1						
18		į	i ·			

1 ,, 4		ļ				
19						

20						
31						
21						
22					Will con-	
7						
23					-	
"-						
		1			•	
24						
]]
25						
		1				
1 , 4						
26					matel o	[
27						[
]				
,,					-	
28 _						į l
		[popular.	
29		1	1			
-		1				

DRILLING COMPANY: Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin

BAKER REP.: James S. Culp

BORING NO.: BASE-BG27 SHEET 2 OF 2

PROJECT:	MCR	Camp	Leieune	Race	Backgrou	hn	Study
PRUJEUI.	MUCD	Camb	relemie	Dasc	Dackgrou	шu	Dilluy

BORING NO.: BASE-BG28 PROJ. NO.: 62470-371

EAST: 2530615.501 NORTH: 334539.505 COORDINATES:

ELEVATION SURFACE: NA

Rig: Tripo	ood Geoprobe							Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)	Water (Ft.)
Size (ID)	1.5"				7/15/00	6	Partly Sunny 85	5
Length	2.0'							
Туре	Stainless							
Hammer Wt.	NA							
Fall	NA							
Remarks	<u></u>							

Remarks:

	SAN	APLE TY	YPE	<u>DEFINITIONS</u>			
			A = Auger	med = medium	ft or ' = feet		
	T = Shelby Tube W = Wash			v = very	bgs = below ground surface		
	R = Air Rotary C = Core			lt = light	MSL= mean sea level		
	D = Denison P = Piston			dk = dark			
		No Sam	ple	NA= not applicable/not	available	l inne	
	Sample	Sample				Elevation	
Depth (Ft.)	Type &	Rec.		Visual Description		(Ft. MSL)	
	No.	(Ft.,%)			^ *		
l <u>.</u> -			SILT, brown, trace sand, trace		0.5		
	S-1	1.2		collected at 0.0-1.0 ft, bgs	***************************************	-	
1		60%	SAND, fine, It brown to brown	, trace silt, dry.	******		
2 2.0							
l ,		,			2 -	•	
3	S-2	50%	SILT, brown, trace sand, trace	to little electric deman	3.0		
$\begin{vmatrix} 4 & 4 & 4.0 \end{vmatrix}$		30%	, ,	• •	$4.\overline{0}$		
4 4.0			BASE-BG28-02	collected at 3.0-3.0 ft, bgs	4.0	<u>+</u>	
5	S-3	1	SILT and SAND, fine, brown,	down maint	_	1	
'-	3-3	50%	SILI and SAIND, mic, brown,	damp-moist.		1	
$\frac{1}{6} = \frac{1}{6.0}$		3070			$6.\overline{0}$	1	
0 - 0.0			End of Boring at 6.0'		0,0	1	
1 7 1			Ella of Dorling at 0.0			1	
'⊢	ĺ					1	
8						1	
°					***************************************	1	

DRILLING COMPANY Parratt-Wolff

BAKER REP.: James S. Culp BORING NO.: BASE-BG28 SHEET 1 OF 1 Brian Waters and Jim Wheelin DRILLER:

Baker

TEST BORING RECORD

Baker Environmental

PROJECT:	MCB Cam	n Leieune	Base	Background	Study

PROJ. NO.: 62470-371 BORING NO.: BASE-BG29

COORDINATES: EAST: 2464953.434 NORTH: 333244.877

ELEVATION SURFACE: NA

Rig: Tripo	od Geoprol	be			Date		Weather (F)		Depth to
	Split Spoon	Casing	Augers	Core Barrel		Progress (Ft.)			Water (Ft.)
Size (ID)	1.5"				7/12/00	6	Sunny	75	6
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								
Remarks:									

Remarks:						
	SAN	MPLE T	YPE	D	EFINITIONS	
	S = Split	Spoon A	A = Auger	med = medium	ft or ' = feet	
			V = Wash	v = very	bgs = below ground sur	face
	R = Air Rotary C = Core			lt = light	MSL= mean sea level	
	D = Denison $P = Piston$			dk = dark		
		No Sam	<u>^</u>	NA= not applicable/not :	available	
	Sample					Elevation
Depth (Ft.)	Type &	Rec.		Visual Description		(Ft. MSL)
	No.	(Ft.,%)				
	1 -		SAND, fine, brown, little silt, d		0.5	
	S-1	1.3	1	collected at 0.0-1.0 ft, bgs		
	. [65%	SAND, fine, It brown, trace silt	, dry.	-	
22.0		ļ				1
3	S-2	1.6			3.3	1
]]	5-2	80%	SILT, grey and brown, trace fu	ne cand trace clay damn-moist		
4 4.0		3078	Shift, grey and brown, hace in	ne sand, trace cray, damp-moist.	-	
7 7.0					The second secon	
5	S-3	1.8	BASE-BG29-02	collected at 4.5-6.0 ft, bgs		
~ -		90%	D.102 D02/ 02	001100001111111111111111111111111111111		
6 6.0	,		Wet at 6.0'		$6.\overline{0}$	
			End of Boring at 6.0'			
7 7					-	
						
8 7					-	
9						
10						

DRILLING COMPANY Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin

BAKER REP.: James S. Culp

BORING NO.: BASE-BG29 SHEET 1 OF 1

Bakar Baker Environmental

TEST BORING RECORD

PROJECT:	MCB Camp Lejeu	ne Base Background	l Study		
PROJ. NO.:	62470-371		BORING NO.:	BASE-BG30	
COORDINAT	ES: EAST:	2473907.939	NORTH:	331039.796	
ELEVATION	SURFACE:	NA			
,					1 20 12 1

Rig: Tripe	od Geoprol	oe .				Progress (Ft.)			Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date		Weathe	r (F)	Water (Ft.)
Size (ID)	1.5"				7/12/00	4	Cloudy	75	NA
Length	2.0'								
Type	Stainless								
Hammer Wt.	NA								
Fall	NA								
Remarks:									
	SAN	IPLE TY	PE.			D	<u>EFINITIONS</u>		
	S = Split Spoon A = Auger					lium	ft or ' = feet		
	T = Shelb	y Tube V	V = Wash		v = very		bgs = below g	round su	ırface
	R = Air F	Rotary	C = Core		It = light MSL = mean sea level				

SAMPLE TYPE	<u>DE</u>	LIMITIONS
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level
D = Denison P = Piston	dk = dark	
N = No Sample	NA= not applicable/not a	vailable

Depth (Ft.) Sample Type & Rec. (Ft. %)			N =	No Sam	ple NA= not applicable/not available	
No. (Ft.,%) SAND, fine, black and grey, dry. 0.7						Elevation
SAND, fine, black and grey, dry.	Depth (Ft.)		B.	Visual Description	(Ft. MSL)
1			No.	(Ft.,%)		
2 2.0	4					
2 2.0 BASE-BG30-02 collected at 3.0-4.0 ft, bgs 3 S-2 1.1 SAND, dk brown, trace silt, moist to wet. Note: organic rich silt. Wet at 4.0' End of Boring at 4.0' End of Boring at 4.0'			S-1			
BASE-BG30-02 collected at 3.0-4.0 ft, bgs S-2 1.1 SAND, dk brown, trace silt, moist to wet. Note: organic rich silt. Wet at 4.0'. End of Boring at 4.0' The state of Boring at 4.0' Base-BG30-02 collected at 3.0-4.0 ft, bgs SAND, dk brown, trace silt, moist to wet. Wet at 4.0'. End of Boring at 4.0' SAND, dk brown, trace silt, moist to wet.	4			70%		
3	$\begin{vmatrix} 2 \end{vmatrix}$	2.0				
55% Note: organic rich silt. Wet at 4.0'. 5	_				/ °	-
4 4.0 Wet at 4.0'. 5	$\begin{vmatrix} 3 \end{vmatrix}$		S-2	1		
End of Boring at 4.0' 5 6 7 8 9				55%	I	-
5	4	4.0				
	I <u>.</u> ⊢				End of Boring at 4.0'	-
						-
	,				_	1
	│ °⊢					1
	, -					1
	Ⅰ ′⊢		:		-	1
	, -					1
	l ° -	j				
	9 -					1
						1
	1 10					1
		:				1

DRILLING COMPANY Parratt-W	/olff	BAKER REP.:	James S. Culp	
DRILLER: Brian Waters and Jin	m Wheelin	BORING NO.:	BASE-BG30	SHEET 1 OF 1

DEFINITIONS

BAKER REP.: James S. Culp

Baker Environmental

PROJECT:	MCB	Camp	Leieune	Base	Background	Stud
PROJECT:	MCB	Camp	Lejeune	Dase	Dackground	Stu

SAMPLE TYPE

BASE-BG31 BORING NO.: PROJ. NO.: 62470-371

324194.941 COORDINATES: EAST: 2505302.351 NORTH:

ELEVATION SURFACE: NA

Rig: Tripod Geoprobe									Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather	r (F)	Water (Ft.)
Size (ID)	1.5"				7/16/00	10	Sunny	85	9.7
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

	S = Split	Spoon A	A = Auger	med = medium	ft or ' = feet	
	T = Shell	y Tube V	W = Wash	v = very	bgs = below ground sur	face
	R = Air	Rotary	C = Core	lt = light	MSL= mean sea level	
	D = Deni	ison I	P = Piston	dk = dark		
	N:	= No San	ple	NA= not applicable/not	available	
	Sample	Sample				Elevation
Depth (Ft.) Type &	Rec.		Visual Description		(Ft. MSL)
	No.	(Ft.,%)				
			SAND, fine, It brown, trace silt	, iron staining and nodules, trace	roots, dry.	
1	S-1	1.7	BASE-BG31-00	collected at 0.0-1.0 ft, bgs		
		85%			<u>-</u>	
2 2	.0					
3	S-2	1.8	Note: silt content increasing.		***************************************	
		90%				
4 4	.0			,		
			Note: little silt, trace clay.		•••	1
5	S-3	1.2				
		60%			_	1
6 6	.0					
					_ -	
7	S-4	1.1			7.0	1
		55%			-	1
8 8	.0	ļ	SAND, fine, white, dry.		8.0	1
						4
9 _	S-5	1.8	SAND, fine, brown, trace silt, r			-
		90%	BASE-BG31-04	collected at 8.5-9.5 ft, bgs		4
10 10	0.0				10.0	4
		1	End of Boring at 10.0'			<u> </u>

DRILLING COMPANY Parratt-Wolff

Brian Waters and Jim Wheelin BORING NO.: BASE-BG31

SHEET 1 OF 1 DRILLER:

Baker

TEST BORING RECORD

Baker Environmental

PROJECT: MCB Camp Lejeune Base Background Study

PROJ. NO.: 62470-371 BORING NO.: BASE-BG32

COORDINATES: EAST: 2531300.585 NORTH: 326026.705

ELEVATION SURFACE: NA

Rig: Tripod Geoprobe									
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weathe	r (F)	Water (Ft.)
Size (ID)	1.5"				7/15/00	8	Rain	85	NA
Length	2.0'								
Туре	Stainless								<u> </u>
Hammer Wt.	NA								
Fall	NA								

Remarks:

	SAN	IPLE TY	YPE	D	EFINITIONS			
	S = Split	Spoon A	A = Auger	med = medium	ft or $' = feet$			
	T = Shelb	y Tube V	V = Wash	v = very	bgs = below ground sur	face		
	R = Air F		C = Core	lt = light	MSL= mean sea level	Ì		
	D = Denis		P = Piston	dk = dark				
		No Sam		NA= not applicable/not	available	Elevation		
	Sample	Sample		i				
Depth (Ft.)	Type &	Rec.	Visual Description					
	No.	(Ft.,%)						
_				AND, fine, brown, trace silt, damp.				
1 _	S-1	1.2	BASE-BG32-00	collected at 0.0-1.0 ft, bgs				
4		60%			-			
2 2.0					2.5			
, 	S-2	1.8				1		
3	5-2	90%	SAND, fine, reddish-brown, tra	oo silt damn		1		
, - 1,		90%	SAND, time, readish-brown, tra	ice sir, damp.	-	1		
4 4.0								
5	S-3	1.8			5.3			
³ -	5-3	90%	SAND, fine, brown, trace silt, o	lamn	5.8			
$\frac{1}{6}$		2070	SAND, fine, dk brown, little sil			1		
0	 		i	collected at 6.0-7.0 ft, bgs		1		
7	S-4	1.9	Note: moist at 6.0-8.0'.		7.5			
´ ⊣		95%	SAND, fine, It brown, trace silt	, moist.				
8 8.0					8.0			
			End of Boring at 8.0'		•			
9					Nation of the latest and the latest			
4						4		
10						-		
	<u></u>	1	<u>L</u>			<u> </u>		

DRILLING COMPANY Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin

BAKER REP.: James S. Culp

BORING NO.: BASE-BG32 SHEET 1 OF 1

B/0/707

TEST BORING RECORD

Baker Environmental

PROJECT:	MCB	Camp L	eieune	Rase	Background	Study
110000.	747		CICULTO	$-\omega\omega$	Davisioniu	Duu

PROJ. NO.: 62470-371 BORING NO.: BASE-BG33

COORDINATES: EAST: 2511793.175 NORTH: 324794.582

ELEVATION SURFACE: NA

Rig: Tripod Geoprobe						l		Depth to	
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather	r (F)	Water (Ft.)
Size (ID)	1.5"				7/14/00	8	Sunny	85	7.1
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

	SAMPLE TYPE			<u>DEFINITIONS</u>				
	S = Split	Spoon A	x = Auger	med = medium	ft or ' = feet			
T = Shelby Tube W = Wash			V = Wash	v = very	bgs = below ground sur	face		
R = Air Rotary C = Core				lt = light	MSL= mean sea level	1		
D = Denison P = Piston				dk = dark		i		
	N =	No Sam	ple	NA= not applicable/not available				
	Sample	Sample				Elevation		
Depth (Ft.) Type & Rec.			<u>-</u>	Visual Description	Visual Description (Ft. MS			
	No. (Ft.,%)							
			SAND, fine, lt grey-white, trace	e to no silt, dry.				
1	S-1	1.7	BASE-BG33-00	collected at 0.0-1.0 ft, bgs				
		85%						
22.0								
			Note: color change at 2.2'.					
3	S-2	1						
		50%			_			
4 4.0	,							

DRILLING COMPANY Parratt-Wolff

S-3

S-4

6.0

8.0

10

1.6

80%

1

50%

Note: moist at 4.0 to 6.0'.

Note: wet at 6.0 to 8.0'.

End of Boring at 8.0'

DRILLER: Brian Waters and Jim Wheelin

BAKER REP.: James S. Culp

BASE-BG33-02, -02-DUP and -02-MS/MSD collected at 4.0-6.0 ft, bgs

BORING NO.: BASE-BG33 SHEET 1 OF 1

Baker Environmental

PROJECT: MCB Camp Lejeune Base Background Stud
--

PROJ. NO.: 62470-371 BORING NO.: BASE-BG34

COORDINATES: EAST: 2520522.097 NORTH: 314150.609

ELEVATION SURFACE:

Rig: Tripod Geoprobe							Depth to		
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weathe	r (F)	Water (Ft.)
Size (ID)	1.5"				7/15/00	8	Sunny	80	NA
Length	2.0'			· · · · · · · · · · · · · · · · · · ·					
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA							*************	1

Remarks:

SAMPLE TYPE		DEFINITIONS
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level
D = Denison $P = Piston$	dk = dark	
N = No Sample	NA= not applicable/	not available

N = No Sam		No Sam	ole NA= not applicable/not available				
	Sample	Sample		Elevation			
Depth (Ft.)	Type &	Rec.	Visual Description	(Ft. MSL)			
	No.	(Ft.,%)					
			SAND, fine, it brown, trace silt, dry-damp.				
1	S-1	1.3	BASE-BG34-00 collected at 0.0-1.0 ft, bgs]			
		65%	_	<u> </u>			
2 2.0							
			<u> </u>]			
3	S-2	1.8]			
		90%	<u>-</u>				
4 4.0							
_ 4			Note: It brown to grey at 4.0'.	<u> </u>			
5	S-3	1.5					
		75%	_				
6 6.0							
			BASE-BG34-03 collected at 7.0-8.0 ft, bgs				
7	S-4	1.3	Note: moist at 6.0-8.0'.	- 1			
1 , 4 ,		65%	<u>-</u>]			
8 8.0			8.0				
			End of Boring at 8.0'				
9 _							
1,, -			_				
10			_				
				1			

DRILLING COMPANY Parratt-Wolff

BAKER REP.: James S. Culp BORING NO.: BASE-BG34 DRILLER: Brian Waters and Jim Wheelin SHEET 1 OF 1

Ba	Ker	En	viro	onn	ıen	tal

PROJECT: MCB Camp Lejeune Base Backgrou

PROJ. NO.: 62470-371 BORING NO.: BASE-BG35

COORDINATES: EAST: 2524201.886 NORTH: 311513.576

ELEVATION SURFACE: NA

Rig: Trip	g: Tripod Geoprobe								Depth to	
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weathe	r (F)	Water (Ft.)	
Size (ID)	1.5"				7/16/00	4	Sunny	85	3.9	
Length	2.0'									
Туре	Stainless									
Hammer Wt.	NA						77 77 77 77			
Fall	NA									

Remarks:

SAMPLE TYPE		DEFINITIONS
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level
D = Denison $P = Piston$	dk = dark	
N = No Sample	NA= not applicable	/not available
Sample Sample		Elevation

			1112 Mot applicable, not available			
	Sample			Elevation (Ft. MSL)		
		Rec.	Visual Description			
	No.	(Ft.,%)				
			SAND, fine, brown, iron staining, trace silt, trace roots, damp.			
1 _	S-1	2	BASE-BG35-00 collected at 0.0-1.0 ft, bgs			
		100%				
2 2.0						
			BASE-BG35-01 collected at 2.0-3.0 ft, bgs			
3	S-2	1.8				
		90%	Note: wet at 3.9'			
4 4.0			4.0			
			End of Boring at 4.0'			
5						
, 			_			
6			<u> </u>			
7			4			
′ —						
8 -						
- 8 →						
_						
9 🚽						
,, -			_			
10						
1 1						

DRILLING COMPANY Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG35 SHEET 1 OF 1

BAKER REP.: James S. Culp

2010

TEST BORING RECORD

Baker Environmental

PR	DJECT:	MCR	Camp	Leieune	Base	Backe	round	Study	r
1 1//	JJLCI.	IVICID	Camb	Lolouno	Lase	L'aux.	LULLIU	Diuu	

PROJ. NO.: 62470-371 BORING NO.: BASE-BG36

COORDINATES: EAST: 2517843.470 NORTH: 312906.158

ELEVATION SURFACE: NA

Rig: Tripo	od Geoprol	Geoprobe							Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather	r (F)	Water (Ft.)
Size (ID)	1.5"				7/15/00	6	Sunny	80	3.8
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

	SAN	MPLE TY	PE		<u>DEFINITIONS</u>			
	S = Split	Spoon A	= Auger	med = medium	ft or' = feet			
	T = Shelb	y Tube W	V = Wash	v = very	bgs = below ground su	ırface		
•				lt = light	MSL= mean sea level			
	D = Deni	son P	= Piston	dk = dark				
	N =	= No Sam	ple	NA= not applicable	/not available			
	Sample	Sample				Elevation		
Depth (Ft.)	Type &	Rec.		Visual Description	on	(Ft. MSL)		

		Sample	Sample		Elevation
Depth (Ft.)	Type &	Rec.	Visual Description	(Ft. MSL)
		No.	(Ft.,%)		
_			_	SAND, fine, it grey, trace silt, dry.	-
1		S-1	1	BASE-BG36-00 collected at 0.0-1.0 ft, bgs 1.8	-
			50%	<u> </u>	4
2	2.0			BASE-BG36-01 collected at 2.0-3.0 ft, bgs SAND, fine, it brown, trace silt, damp.	-
3		S-2	1	SAND, me, n brown, date sin, damp.	1
<i>-</i>	ĺ	D-2	50%		-
4 -	4.0			Wet at 3.8'.	1
5		S-3	1.5	_	
			75%	-	4
6	6.0			6.0	
	į			End of Boring at 6.0'	-
7	ļ		Į.		-
8 -				-	1
۰	1				1
9 -				_	
-]
10]				<u> </u>
	1				1

DRILLING COMPANY Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG36 SHEET 1 OF 1

BAKER REP.: James S. Culp

TEST BORING RECORD

Baker Environmental

PROJECT: MCB Camp Lejeune Base Back	ground Study
-------------------------------------	--------------

PROJ. NO.: 62470-371 BORING NO.:

BASE-BG37 EAST: 2504577.387 317942.180 COORDINATES: NORTH:

ELEVATION SURFACE: NA

Rig: Tripo	od Geoprobe								Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)		Water (Ft.)
Size (ID)	1.5"				7/16/00	4	Sunny	85	2.5
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remark	s:									
		SAN	MPLE T	YPE		DEFINITIONS				
				A = Auger	me	d = medium	ft or ' = feet			
	· · · · · · · · · · · · · · · · · · ·					very	bgs = below ground sur	face		
	R = Air Rotary C = Core					light	MSL= mean sea level			
		D = Denis		P = Piston	3	= dark				
			No Sam	ple	NA NA	= not applicable/no	t available			
		Sample	Sample					Elevation		
Depth (Ft.)	Type &	Rec.			Visual Description		(Ft. MSL)		
	г	No.	(Ft.,%)					<u> </u>		
, -		C 3	1 , ,	SAND, fine, black and gre	•	•	-	-		
1		S-1	1.1 55%	BASE-BG3	BASE-BG37-00 collected at 0.0-1.0 ft, bgs					
2 -	2.0		23%	SAND, fine, reddish brown, trace silt.						
² —	2.0			BASE-BG37-01 collected at 2.0-2.5 ft, bgs				1		
3		S-2	1.6	DASE-DG57-01 confected at 2.0-2.3 It, bgs				1		
			80%	SAND, fine, grey, iron sta	ining, trace	e silt, moist to wet at 2.5.		1		
4	4.0			, , , ,	<i>J</i>	•	$4.\overline{0}$	ij		
-				End of Boring at 4.0'						
5 _										
							_			
6 _	·									
_							_			
7							_	-		
ا							-	-		
8								-		
9							_	-		
۶								1		
10							-			
* · ·			}					4		

DRILLING COMPANY Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin BAKER REP .: James S. Culp

BORING NO.: BASE-BG37 SHEET 1 OF 1

Booker

TEST BORING RECORD

88	ker	Env	iron	men	ចោ

PROJECT:	MCB Car	np Lejeur	ne Base Bac	kground St	ıdy				
PROJ. NO.:	62470-37				BORING	NO.:	BASE-BG38		
COORDINAT	ES:	EAST:	2505816	5.085	NORTH:		313988.579	,	
ELEVATION	SURFAC	E:	NA						
Rig: Tripo	od Geopro	he							Depth to
gp-	Split	Casing	Augers	Core	Date	Progress	Weather	r (F)	Water
	Spoon		g	Barrel		(Ft.)		(-)	(Ft.)
Size (ID)	1.5"				7/16/00	4	Sunny	85	NA
Length	2.0'								
Туре	Stainless			····					1
Hammer Wt.	NA								
Fall	NA								
Remarks:									
	. —								
A		PLE TY		· · · · · · · · · · · · · · · · · · ·		D	EFINITIONS		
	S = Split	-	_		med = med	dium	ft or ' = feet		
	T = Shelb	-			v = very		bgs = below gr	round sui	rface
	R = Air F	•	C = Core		lt = light		MSL= mean s	ea level	
	D = Denis		P = Piston		dk = dark				
		No Sam	ple		NA= not a	pplicable/not	available		
	Sample	Sample							Elevation
Depth (Ft.)	Type &	Rec.			Visual 2	Description			(Ft. MSL)
	No.	(Ft.,%)							<u> </u>
	<i>a</i> .			O, fine, black, da		· · · · · · · · · · · · · · · · · · ·		0.5	
	S-1	1 6		t grey, trace silt,					-
, - , ,		60%	BASE-BG38-00 collected at 0.0-1.0 ft, bgs					4	
2 2.0									-
3	S-2	1.3	NY-411					_	1
³ -	3-2	65%	Note: color ch	ange to brown.					1
4 4.0		0376	,	BASE BC38-0:	l collected at 3.	0.39# bac		4.0	
7 7.0			End of Boring		t conecteu at 5.	0-3.7 IC, Dgs		7.0	4
5 -			End of Doring	, at 4.0				_	
~ H									1
6								•	†
Ŭ d l									1
7 1 1								-	1
· -									1
8								-	1
									1
9								_	1
									1

DRILLING COMPANY Parratt-Wolff

10 _

Brian Waters and Jim Wheelin DRILLER:

BAKER REP.: James S. Culp BORING NO.: BASE-BG38 SHEET 1 OF 1

Daile. Little	incircui	ı							
PROJECT:	MCB Car	np Lejeu	ne Base Bac	kground St	udv				
PROJ. NO.:	62470-37				BORING	NO.:	BASE-BG39	BASE-BG39	
COORDINAT	W	EAST:	2495447	1.107	NORTH:		316463.322		
ELEVATION			NA						
									T
Rig: Trip	od Geopro				4	_			Depth to
	Split	Casing	Augers	Core	Date	Progress	Weather (F)	Water
	Spoon			Barrel		(Ft.)			(Ft.)
Size (ID)	1.5"				7/16/00	4	Sunny	85	3.5
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								
Remarks:				1.					
	SAN	APLE TY	/PE			D	EFINITIONS		
	S = Split				med = med		ft or ' = feet		
	T = Shelb				v = very		bgs = below gro	und sur	face
	R = Air I	•	C = Core		lt = light		MSL= mean sea		
i	D = Deni	•	= Piston		dk = dark			, 10 , 01	
		No Sam				pplicable/not	available		
	Sample	Sample	F		11111 1100 11		W / W. K. C. C. C. C. C. C. C. C. C. C. C. C. C.		Elevation
Depth (Ft.)	Type &	Rec.			Vignal	Description			(Ft. MSL
Dopar (1 t.)	No.	(Ft.,%)			V ISHUL	Description			(2 6. 14152
	110.	(1 (., 70)	SAND fine h	lack and dk ore	y, trace silt, trac	e roots damn			
1	S-1	1.3		_	0 collected at 0.	-		1.1	1
* -	0-1	65%		PW2F-PG23-0	o conected at o.	.o-1.o 12 B25			1
2 2.0	İ	0370	CII TV CANT), fine, brown, d	lama-moist			2.0	-
2 - 2.0	 					MCMCD collect	4.4.4.2.0.2.0.0.1		
3	S-2	1.7		DASE-DG39-0.	1, -01-DOP, -01	-MS/MSD conec	ted at 2.0-3.0 ft, bgs	_	1
³ →	3-2	1 . 1	CAND C. 1			2 51			1
4 + 4.0	1	8370	SAND, IIIe, o	rown, trace siit,	moist to wet at	3.5.		4 0	
4 4.0								4.0	{
			End of Boring	at 4.0'					ļ
5	1								{
								_	
$^{\circ}$ \dashv								*******	ĺ
								_	
′ →									-
								_	ł
8									
								-	i
9									ļ
									1
10									

DRILLER: Brian Waters and Jim Wheelin

BAKER REP.: James S. Culp BORING NO.: BASE-BG39 SHEET 1 OF 1

ыа	ĸer	Ε	VII	on	m	en	Č

PROJECT: MCB Camp Leier	me Base Background Study
-------------------------	--------------------------

PROJ. NO.: 62470-371 B0

BORING NO.: BASE-BG40

COORDINATES: EAST: 2497485.978
ELEVATION SURFACE: NA

NORTH: 312619.049

d Geoprol	be							Depth to	
Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)		Water (Ft.)	
1.5"				7/16/00	4	Sunny	85	3.3	
2.0'									
Stainless								<u> </u>	
NA				i i					
NA								 	
	Split Spoon 1.5" 2.0' Stainless NA	Split Spoon Casing 1.5" 2.0' Stainless NA	Split Spoon Casing Augers 1.5"	Split Casing Augers Core Barrel 1.5" 2.0' Stainless NA	Split SpoonCasing BarrelAugers BarrelCore BarrelDate1.5"7/16/002.0'7/16/00Stainless7/16/00	Split SpoonCasing SpoonAugers BarrelCore BarrelDate (Ft.)1.5"7/16/0042.0'5tainless5tainlessNA100100	Split Spoon Casing Spoon Augers Barrel Core Barrel Date (Ft.) Progress (Ft.) Weather (Ft.) 1.5" 7/16/00 4 Sunny 2.0' 5tainless NA NA	Spoon Barrel (Ft.) 1.5" 7/16/00 4 Sunny 85 2.0' Stainless NA NA NA	

Remarks:

		~					
			MPLE T			<u>EFINITIONS</u>	
				A = Auger	med = medium	ft or ' = feet	
				W = Wash	v = very	bgs = below ground sur	face
		R = Air B	•	C = Core	lt = light	MSL= mean sea level	
		D = Deni		P = Piston	dk = dark		
			No Sam		NA= not applicable/not	available	
		Sample	Sample				Elevation
Depth (Ft.)	Type &	Rec.		Visual Description		(Ft. MSL)
		No.	(Ft.,%)				
				SAND, fine, lt brown, trace silt	ND, fine, It brown, trace silt.		
1		S-1	1.8	SILT, black, organic rich, trace	sand, damp.		
			90%	BASE-BG40-00	collected at 0.0-1.0 ft, bgs		}
2	2.0					1.9	
			1.0				
3		S-2	1.6	SAND, fine, brown, little-trace	•		
4	4.0		80%	BASE-BG40-01	collected at 2.0-3.0 ft, bgs	4~	
-	+.∪			E. J. CD		4.0	ļ i
5				End of Boring at 4.0'			
6			i				
l							
7						_	
']						
8							
˘⊢							
9 -							
│						 -	
10						<u> </u>	
1~-							

DRILLING COMPANY Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin

BAKER REP.: James S. Culp

BORING NO.: BASE-BG40 SHEET 1 OF 1

PROJECT:	MCB	Camp	Leieune	Base	Backer	hruo	Stud
FROMECT.	IVICD	Camb	relemie	Dasc	Dacker	оши	OLUC

PROJ. NO.: 62470-371 BORING NO.: BASE-BG41

COORDINATES: EAST: 2510352.885 NORTH: 302017.703

ELEVATION SURFACE: NA

Rig: Tripo	od Geoprol Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)		Depth to Water (Ft.)	
Size (ID)	1.5"				7/15/00	4	Partly Cloudy	85	3.9	
Length	2.0'									
Type	Stainless									
Hammer Wt.	NA									
Fall	NA									
Remarks:										

	SAN	MPLE T	<u>YPE</u>	<u>D</u>	EFINITIONS		
:	S = Split	Spoon A	A = Auger	med = medium	ft or ' = feet		
T = Shelby Tube W = Wash			W = Wash	v = very	bgs = below ground surface		
R = Air Rotary C = Core			C = Core	lt = light	MSL= mean sea level		
D = Denison $P = Piston$			P = Piston	dk = dark			
	N =	No Sam	ple	NA= not applicable/not	available		
	Sample	Sample				Elevation	
Depth (Ft.)	Type &	Rec.		Visual Description			
	No.	(Ft.,%)		_			
1	Ç 1	1.2	CAND Sine may top a silt litt	la casta des	-		

İ			Rec. (Ft.,%)	Visual Description		(Ft. MSL)
	1 22.0	S-1	1.2 60%	SAND, fine, grey, trace silt, little roots, dry. BASE-BG41-00 collected at 0.0-1.0 ft, bgs Note: color change to brown at 1.0'.		
	3 - 4.0	S-2	1 50%	SAND, fine, dk brown, little silt (organic rich), little roots, moist to wet at 3.9'. BASE-BG41-01 collected at 3.0-3.9 ft, bgs	3. 0 4. 0	
	5			End of Boring at 4.0'		
	6 <u> </u>					
	89					
	10				_	

DRILLING COMPANY Parratt-Wolff

BAKER REP.: James S. Culp Brian Waters and Jim Wheelin DRILLER:

BORING NO.: BASE-BG41 SHEET 1 OF 1

COORDINATES: EAST: 2507170.522 NORTH: 295450.911 Rig: Tripod Geoprobe Split Casing Spoon Augers Core Barrel Date Progress (Ft.) Weather (F) Water (Ft.) Size (ID) 1.5" 7/16/00 2 Sunny 85 2 Length 2.0' 5tainless				ne Base Bac	kground Stu					
Rig: Tripod Geoprobe Spoint Casing Augers Core Barrel Fit. Ci	PROJ. NO.:						NO.:	BASE-BG42		
Rig: Tripod Geoprobe Split Spoon Augers Core Barrel Progress Weather (F) Water (Ft.)					.522	NORTH:		295450.911		
Split Spoon Augers Core Barrel Progress Weather (F) Water (Ft.)	ELEVATION	SURFAC	E:	<u>NA</u>						
Split Spoon Augers Core Barrel Progress Weather (F) Water (Ft.)	Rig: Tripo	od Geopro	be			T		1		Denth to
Size (ID)	<u> </u>			Augers	Core	Date	Progress	Weather	(F)	-
Length Type Stainless		Spoon			Barrel	1 . 1.	(Ft.)			(Ft.)
Stainless NA	Size (ID)	1.5"				7/16/00	2	Sunny	85	2
Hammer Wt. Fall Remarks: Sample DEFINITIONS	Length	2.0'								
Remarks: Sample Type Sessit Spoon A = Auger Teshelby Tube We Wash Remarks We Wash Remarks We Wash Remains Remains We Wash Remains We We Wash Remains We We Wash We We Wash We We We We We We We We We We We We We	Type	Stainless								
Sample Type S = Split Spoon A = Auger T = Shelby Tube W = Wash R = Air Rotary C = Core D = Denison P = Piston N = No Sample Depth (Ft.) Sample Sample Type & Rec. No. (Ft.,%) SAND, fine, brown, trace silt, damp to wet at 2.0' BASE-BG42-01 collected at 1.0-2.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs Find of Boring at 2.0'	Hammer Wt.	NA								
SAMPLE TYPE S = Split Spoon A = Auger T = Shelby Tube W = Wash R = Air Rotary C = Core D = Denison N = No Sample Depth (Ft.) Sample Sample Type & Rec. No. (Ft.,%) SAND, fine, brown, trace silt, damp to wet at 2.0'. BASE-BG42-00 collected at 0.0-1.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs End of Boring at 2.0' End of Boring at 2.0'	Fall	NA								
S = Split Spoon A = Auger T = Shelby Tube W = Wash R = Air Rotary C = Core D = Denison P = Piston N = No Sample Depth (Ft.) Sample Type & Rec. No. (Ft.,%) SAND, fine, brown, trace silt, damp to wet at 2.0'. BASE-BG42-01 collected at 1.0-2.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs End of Boring at 2.0' End of Boring at 2.0'	Remarks:		-							<u> </u>
S = Split Spoon A = Auger T = Shelby Tube W = Wash R = Air Rotary C = Core D = Denison P = Piston N = No Sample Depth (Ft.) Sample Type & Rec. No. (Ft.,%) SAND, fine, brown, trace silt, damp to wet at 2.0'. BASE-BG42-01 collected at 1.0-2.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs End of Boring at 2.0' End of Boring at 2.0'										
S = Split Spoon A = Auger T = Shelby Tube W = Wash R = Air Rotary C = Core D = Denison P = Piston N = No Sample Depth (Ft.) Sample Type & Rec. No. (Ft.,%) SAND, fine, brown, trace silt, damp to wet at 2.0'. BASE-BG42-01 collected at 1.0-2.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs End of Boring at 2.0' End of Boring at 2.0'		SAN	PLE TY	PE.			D	EFINITIONS		
T = Shelby Tube W = Wash R = Air Rotary C = Core D = Denison N = No Sample Depth (Ft.) Sample Sample Depth (Ft.) Sample Sample Sample Visual Description (Ft. MSL) SAND, fine, brown, trace silt, damp to wet at 2.0'. BASE-BG42-00 collected at 0.0-1.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs						med = med				
R = Air Rotary C = Core It = light MSL = mean sea level dk = dark NA = not applicable/not available						1			ound sur	face
D = Denison						1 .				
N= No Sample			•			_				
Depth (Ft.) Sample Type & Rec. No. (Ft.,%) SAND, fine, brown, trace silt, damp to wet at 2.0'. S-1 2 100% BASE-BG42-00 collected at 0.0-1.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs 2.0 Sand of Boring at 2.0' S						•	pplicable/not	available		
Depth (Ft.) Type & Rec. (Ft.,%) 1										Elevation
No. (Ft.,%) SAND, fine, brown, trace silt, damp to wet at 2.0'. S-1 2 100% BASE-BG42-00 collected at 0.0-1.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs End of Boring at 2.0' End of Boring at 2.0'	Depth (Ft.)					Visual 1	Description			l .
SAND, fine, brown, trace silt, damp to wet at 2.0'. BASE-BG42-00 collected at 0.0-1.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs End of Boring at 2.0' End of Boring at 2.0'	F ()									(
S-1 2 100% BASE-BG42-00 collected at 0.0-1.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs End of Boring at 2.0' End of Boring at 2.0' 5				SAND, fine, b	rown_trace silt.	damp to wet at	2.0'.	*		
2 2.0 BASE-BG42-00 collected at 0.0-1.0 ft, bgs BASE-BG42-01 collected at 1.0-2.0 ft, bgs 2.0 End of Boring at 2.0' 5	1	S-1		,	,					
2		~ -		ī	3ASF_BG42-00	collected at 0.	.0-1.0 ft. bgs			Ì
End of Boring at 2.0' 5	2 2.0		100,0						2.0	
3 — 4 — — — — — — — — — — — — — — — — —		******								
4	3								_	
5 _ 6 _ 7 _ 7 _ 8 1	~ -									İ
5 _ 6 _ 7 _ 7 _ 8 1	4 -									
6	· —									
6	5 -									
	~ 									
	6 -								_	
8 _	ĭ⊢ l								-	
8 _	7 -								_	i
	′ -									1
	ا ا و								_	
	°⊢									
² - - -	<u>,</u> -								_	1
	" —									
10	10 - 1								<u>۔۔۔</u>	

DRILLER: Brian Waters and Jim Wheelin

BAKER REP.: James S. Culp BORING NO.: BASE-BG42 SHEET 1 OF 1

Baker	=nvironmental

PROJECT:	MCB Camp	Leieune Base	Background Stud
IKOJECI.	MCD Camp	Lefeure Dase	Dackground Stu

PROJ. NO.: 62470-371 BORING NO.: BASE-BG43

COORDINATES: EAST: 2496395.106 NORTH: 305895.110

ELEVATION SURFACE: NA

Rig: Tripe	od Geoprol	be							Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather	r (F)	Water (Ft.)
Size (ID)	1.5"				7/16/00	8	Sunny	85	7
Length	2.0'							· · · · · · · · · · · · · · · · · · ·	
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA								

Remarks:

SAMPLE TYPE		<u>DEFINITIONS</u>
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level
D = Denison $P = Piston$	dk = dark	
N = No Sample	NA= not applicable/	not available

			112 Hot upplication, not available	
	Sample		§	Elevation
Depth (Ft.)	1	Rec.	Visual Description	(Ft. MSL)
	No.	(Ft.,%)		
4			SAND, fine, it grey, dry.	
1	S-1	0.8	BASE-BG43-00 collected at 0.0-1.0 ft, bgs	1
4		40%	1.8	
2 2.0			SAND, fine, It brown, trace silt, damp, iron staining.	
			_	1
3	S-2	1.1	Note: brown and tan with iron staining at 2.0'	_
, 4,,		55%	_	
4 4.0	4	ļ		4
5		1	_	
³ –	S-3	1.8		-
6 6.0		90%	_	
0 - 0.0	<u>'</u>		BASE-BG43-02 collected at 5.0-7.0 ft, bgs	4
7	S-4	1.5	Note: wet at 7.0'	-
′ —	3-4	75%	Note, wet at 7.0	}
8 8.0		7370	$8.\overline{0}$	1
	 		End of Boring at 8.0'	•
9	1		Lift of Doling at 6.0	
· 1				1
10			-	1
				1

DRILLING COMPANY Parratt-Wolff BAKER REP.: James S. Culp

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG43 SHEET 1 OF 1

2010

TEST BORING RECORD

Baker Environmental

PROJECT:	MCB	Camp	Leienne	Base	Background	Study

 PROJ. NO.:
 62470-371
 BORING NO.:
 BASE-BG44

 COORDINATES:
 EAST:
 2487384.105
 NORTH:
 310301.978

COORDINATES: EAST: 2487384.105 NORTH: ELEVATION SURFACE: NA

Rig: Trip	od Geoprol	be		·····		**************************************			Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weathe	r (F)	Water (Ft.)
Size (ID)	1.5"				7/16/00	8	Sunny	85	8
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								
Fall	NA							· · · · · · · · · · · · · · · · · · ·	

Remarks:

SAMPLE TYPE	DE	FINITIONS
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level
D = Denison $P = Piston$	dk = dark	

N = No Sample NA= not applicable/not available

	7.4	110 Dan	ipie not applicable/flot available	
	Sample	Sample	l e e e e e e e e e e e e e e e e e e e	Elevation
Depth (Ft.)	Type &	Rec.	Visual Description	(Ft. MSL)
	No.	(Ft.,%)		
	1		SAND, fine, It brown, trace silt, trace roots, dry.	
1	S-1	1.6	BASE-BG44-00 collected at 0.0-1.0 ft, bgs	
		80%		·
2 2.0	<u> </u>	ļ		
			Note: little silt at 2.0'	
3	S-2	1.9		
1 , 1,		95%	_	
4 4.0	ļ			
5	S-3	1	Note: iron staining and little silt, trace clay at 4.0'	
'-	3-3	50%		
6 6.0		3076	_	
1 0 10.0	 		· 	
7	S-4	1.1	Note: wet at 8.0'	
'-		55%	BASE-BG44-03 collected at 6.0-8.0 ft, bgs	
8 8.0			8.0	
			End of Boring at 8.0'	
9 7				
10				

DRILLING COMPANY Parratt-Wolff BAKER REP.: James S. Culp

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG44 SHEET 1 OF 1

PROJECT:	MCB	Camp	Lejeune	Base	Background	Study

PROJ. NO.: 62470-371 BORING NO.:

BASE-BG45 COORDINATES: EAST: 2483979.537 NORTH: 312295.165

ELEVATION SURFACE: NA

Rig: Tripe	od Geoprol	be						Depth to
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)	Water (Ft.)
Size (ID)	1.5"				7/17/00	4	Sunny 8	The state of the last of the l
Length	2.0'			······································	1	-	Duilly 0	3 3.3
Type	Stainless			······································				
Hammer Wt.	NA			······································				
Fall	NA				1			

Remarks:

	<u>SAN</u>	MPLE TY	YPE	D	EFINITIONS			
	S = Split	Spoon A	A = Auger	med = medium	ft or ' = feet			
	T = Shelb	y Tube V	V = Wash	v = very	bgs = below ground sur	face		
	R = Air F	Rotary	C = Core	lt = light	MSL= mean sea level			
	D = Denis	son F		dk = dark				
	N =	No Sam	ple	NA= not applicable/not	available			
	Sample	Sample				Elevation		
epth (Ft.)	Type &	Rec.						
	No.	(Ft.,%)				(Ft. MSL)		

		Sample	Sample			Elevation
	Depth (Ft.)	Type &	Rec.	Visual Description		(Ft. MSL)
		No.	(Ft.,%)	•		(0. 2.22)
			_	SAND, fine, It grey, trace silt, dry.		
ļ	1 —	S-1	1	BASE-BG45-01, -01-DUP, -01-MS/MSD collected at 2.0-3.0 ft, bgs		
ı	4		50%		1.8	
	2 2.0			SILT, brown, trace fine sand, damp.		•
	, -	0.0		BASE-BG45-01, -01-DUP, -01-MS/MSD collected at 2.0-3.0 ft, bg	2.2	-
	3	S-2	1			
	4 - 4		50%	SILTY SAND, fine, grey and brown, trace clay, damp to wet at 3.3'.		
١	4 4.0				1.0	
ı	5	* .		End of Boring at 4.0'		
1	~ 					
	6				\dashv	
ı					\dashv	
	7	İ			\dashv	
١				•	\dashv	
	8 -		1		\dashv	
				•		
١	9		İ		\dashv	
I					\dashv	
ĺ	10				4	
	-~ 	Ī			\dashv	
ı]	į	ĺ	•	\dashv	

DRILLING COMPANY Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin BAKER REP .: James S. Culp

BORING NO.: BASE-BG45 SHEET 1 OF 1

Editor Citylio									
PROJECT:	MCB Ca	mp Lejeu	ne Base Bac	kground Stu	udy				
PROJ. NO.:					BORING 1	NO.:	BASE-BG46		
COORDINA	ATES:	EAST:	2470248	.313	NORTH:		304238.542		
ELEVATIO	N SURFAC	Œ:	NA						
Rig: Tr	ipod Geopro	be			T		T		Depth to
	Split	Casing	Augers	Core	Date	Progress	Weather	· (F)	Water
	Spoon			Barrel		(Ft.)		(4)	(Ft.)
Size (ID)	1.5"				7/13/00	6	Sunny	80	6
Length	2.0'	 					1		
Туре	Stainless				1				
Hammer W					1		 		
Fall	NA			· · · · · · · · · · · · · · · · · · ·					
Remarks:		<u> </u>	<u> </u>						<u> </u>
	SAI	MPLE TY	PE			D	EFINITIONS		استنتارات بسائلا کار
	S = Split	Spoon A	= Auger		med = med	lium	ft or ' = feet		
	T = Shelb	y Tube V	W = Wash		v = very		bgs = below gr	ound sur	face
	R = Air	Rotary	C = Core		lt = light		MSL= mean se		
	D = Deni	son F	P = Piston		dk = dark				
	N =	= No Sam	ple		NA= not a	pplicable/not a	available		
	Sample	Sample							Elevation
Depth (Ft.)		Rec.			Visual 1	Description			(Ft. MSL)
	No.	(Ft.,%)				<u>-</u>			
			SAND, fine, It	grey, trace to n	o silt, dry.				
1 _	S-1	1.3		BASE-BG46-00	0 collected at 0.	0-1.0 ft, bgs		1.0	
_		65%	SAND, fine, lt	brown, trace si	lt, damp.				}
2 2.0	0							2.0	1
3	S-2	1	SAND, dk bro	own, little silt, d	lamp-moist.				
		85%							•
4 4.0	0		1	BASE-BG46-02	2 collected at 3.	0-4.0 ft, bgs		**********	
			Note: wet at 4.	.0'.				***	
5	S-3	2							
		100%							
6 6.0	0							6.0	
			End of Boring	at 6.0'				_	
7									
4								_	
8]							
9	1								ļ
	İ								
10]							ļ
l 1	1	1							I

DRILLING COMPANY Parratt-Wolff
DRILLER: Brian Waters and Jim Wheelin

BAKER REP.: James S. Culp BORING NO.: BASE-BG46 SHEET 1 OF 1

PROJECT:			Background	

PROJ. NO.: 62470-371 BORING NO.: BASE-BG47

COORDINATES: EAST: 2465137.153 NORTH: 309651.216

ELEVATION SURFACE: NA

Rig: CME	S-35 Truck Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weathe	r (F)	Depth to Water (Ft.)
Size (ID)	1.5"			<u> </u>	7/16/00	24	Sunny	75	2.2
Length	2.0'								
Туре	Stainless							T	
Hammer Wt.	NA								
Fall	NA						······································		-
Remarks:	Water tab	le is percl	ned on thic	k clay. Ran (out of equip	ment to advance	e below 24'.	***************************************	
	$\frac{SAN}{S = Split S}$	PLE TY			med = med		FINITIONS ft or ' = feet	·	

SAMPLE TYPE		<u>DEFINITIONS</u>
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSI = mean sea level

dk = dark

D = Denison P = PistonN = No SampleNA= not applicable/not available

	N =	No Sam	iple NA= not applicable/not available	
	Sample	Sample		Elevation
Depth (Ft.)	Type &	Rec.	Visual Description	(Ft. MSL)
	No.	(Ft.,%)		
			SAND, fine, dk brown becoming tan-white, trace silt, dry.	
	S-1	1.6	BASE-BG47-00 COLLECTED AT 0.0-1.0 ft, bgs	
		80%		
2 2.0				
			Wet at 2.2'. 2.	2
3	S-2	1.8	SAND, fine, it brown mottled with yellow-brown, little-some silt, trace clay, wet. 3.	1
4		90%	CLAY, grey mottled with it red, trace fine sand, moist. 3.	3]
4 4.0			SAND, fine, it brown mottled with yellow-orange, some clay, moist. 4.	[0]
4				
5	S-3	2	CLAY, It brown-grey mottled with yellow-orange, trace fine sand, moist, plastic.	
		100%		
6 6.0				
_ 4	_			_
7	S-4	2	7.	L
			CLAY, grey, little-some fine sand, moist, plastic.	_
8 8.0			Note: interbedded clay and fine sand at 7.9-7.95'	_
				_
9 _	S-5	1.8	BASE-BG47-04 COLLECTED AT 8.0-10.0 ft, bgs	_
1 , , .		90%		_
10 10.0				4
			Match to Sheet 2	1 1

DRILLING COMPANY Parratt-Wolff

BAKER REP.: Nathanael Barta

DRILLER: Louis Lefever and Justin Abreu BORING NO.: BASE-BG47 SHEET 1 OF 2

DEFINITIONS

Baker Environmental

PROJECT:

MCB Camp Lejeune Base Background Study

CTO NO.:

62470-371 BORING NO.: BASE-BG47 SAMPLE TYPE

		APLE I			FINITIONS	
	S = Split	Spoon A	= Auger	med = medium	ft or' = feet	
	T = Shelb	y Tube V	V = Wash	v = very	bgs = below ground surf	ace
	R = Air F	Rotary (C = Core	lt = light	MSL= mean sea level	
D=	Denison P	= Piston	N = No Sample	dk = dark		l
	Sample	Sample				Elevation
Depth (Ft.)	Type &	Rec.		Visual Description		(Ft. MSL)
	No.	(Ft.,%)	ĺ	Visual Description		(Lr. MDL)
10	110.	(1 0.,70)				
1º-				Match to Sheet 1		4
,,	~ .				_	1
11_	S-6	1.5	Same.]]
1 4 1		75%				1 1
12 12.0					_] [
		j] [
13	S-7	2				1 1
		100%				1 1
14 14.0						1 1
						[
15	S-8	1.8			-	}
	D-0	ľ	Same clay, except trace sand, me	oist.	-	
		90%			•	
16 16.0						
1 1						
17	S-9	1.6				
7		80%				
18 18.0						
1 10 120:01					 -	
19	S-11	2				ĺ
17	3-11					
1 00		100%			·	
20 20.0						
21	S-12	2				
		100%				
22 22.0					22.0	

23	S-10	2	SAND, fine, and SILT, grey, dry	v		
~ +	2 10	100%	with the state of	, .	 -	
24 24.0		10070			<u></u>	. 1
24 - 24.0					24.0	
_		1	End of Boring at 24.0'			1
25		ĺ				
						1
26						
]					1
27	İ	ļ			-	1
	ļ	ĺ				1
28_		į			-{	ļ
"	Ì	İ				
29					4	1
49		l				
						į

DRILLING COMPANY: Parratt-Wolff

DRILLER:

Louis Lefever and Justin Abreu

BAKER REP.:

Nathanael Barta

BORING NO.:

BASE-BG47

SHEET 2 OF 2

B21/301

TEST BORING RECORD

Baker Environmental

PROJECT:	MCB (lamp]	Leienne	Base	Background	Study
----------	-------	--------	---------	------	------------	-------

PROJ. NO.: 62470-371 BORING NO.: BASE-BG48

COORDINATES: EAST: 2458413.613 NORTH: 316709.888

ELEVATION SURFACE: NA

Rig: Tripo	od Geoprobe								
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)		Water (Ft.)
Size (ID)	1.5"				7/12/00	6	Sunny	75	NA
Length	2.0'								
Туре	Stainless								
Hammer Wt.	NA								1
Fall	NA								

Remarks:

SAMPLE TYPE		<u>DEFINITIONS</u>
S = Split Spoon A = Auger	med = medium	ft or ' = feet
T = Shelby Tube W = Wash	v = very	bgs = below ground surface
R = Air Rotary C = Core	lt = light	MSL= mean sea level
D = Denison $P = Piston$	dk = dark	
N = No Sample	NA= not applicable/	not available

1N - 1NO Sai			iple NA= not applicable/not available	
	Sample	Sample	1	Elevation
Depth (Ft.)		Rec.	Visual Description	(Ft. MSL)
	No.	(Ft.,%)		
			SAND, fine, black and grey, trace silt, little roots, dry.]
	S-1	1.1	BASE-BG48-00 collected at 0.0-1.0 ft, bgs	-
$\begin{vmatrix} 2 & - \\ 2 & 2 \end{vmatrix}$		55%	SAND, fine, lt grey, dry.	4
$\frac{2}{2}$	<u> </u>	ļ	2.0	-
3	S-2	1.2	SAND, fine, It brown, trace silt, moist.	1
	5-2	60%	BASE-BG48-02 collected at 3.0-4.0 ft, bgs	1
4 4.	o	0070	DADD-D-0-02 concetted at 5.0-4.0 15, bg5	1
·			Note: organic-rich silt intermixed with sand. Wet at 4.5'.	1
5	S-3	1.6	_	
		80%		1
6 6.)		6.0	
			End of Boring at 6.0']
7			·	
		İ		
8		ĺ		
9 -			_	
" —				
10			-	
1~—				

DRILLING COMPANY Parratt-Wolff BAKER REP.: James S. Culp

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG48 SHEET 1 OF 1

PROJECT: 1	MCB Camp	Leieune	Base Bacl	kground	Study
------------	----------	---------	-----------	---------	-------

PROJ. NO.: 62470-371 BORING NO.: BASE-BG49

COORDINATES: EAST: 2469737.534 NORTH: 325640.088

ELEVATION SURFACE: NA

Rig: Tripod Geoprobe								Depth to	
	Split Spoon	Casing	Augers	Core Barrel	Date	Progress (Ft.)	Weather (F)		Water (Ft.)
Size (ID)	1.5"				7/12/00	6	Sunny	75	6
Length	2.0'					***************************************			
Туре	Stainless					***************************************			†
Hammer Wt.	NA								
Fall	NA			***	1				

Remarks:

SAMPLE TYPE			<u> YPE</u>	<u>DEFINITIONS</u>				
	S = Split	Spoon A	\ = Auger	med = medium	ft or ' = feet			
	T = Shelb	y Tube V	W = Wash	v = very	bgs = below ground sur	face		
	R = Air F	Rotary	C = Core	lt = light	MSL= mean sea level			
	D = Denis	son F	P = Piston	dk = dark				
N = No Sample			ple	NA= not applicable/not available				
	Sample	Sample				Elevation		
Donth (Et)	T 0-	n		771 -175				

1	Sample	Sample				
1 * ' 1 **		Rec.	Visual Description			
	No.	(Ft.,%)				
			SAND, fine, it brown, trace to no silt, little roots, dry.	_		
	S-1	1.6	Note: no roots at 0.6'.			
1		80%	BASE-BG49-00 collected at 0.0-1.0 ft, bgs			
2 2.0				2.0		
3		1		_		
'-	S-2	1.2 60%	SILT, fine, it brown, little fine sand, trace clay, moist.			
4 4.0		1	BASE-BG49-03, -03-DUP and -03-MS/MSD collected at 5.0-6.0 ft, bgs	-		
4 4.0	 		Note: clay content increasing with depth.			
5	S-3	1.6	Note: trace to little clay, wet at 6.0'.	-		
-		80%	11000. Hace to fittle cray, wet at 0.0.			
6 6.0		0070		6.0		
			End of Boring at 6.0'			
7						
8						
					· ·	
9 _						
10						
10						
L	1			1	ł	

DRILLING COMPANY Parratt-Wolff

DRILLER: Brian Waters and Jim Wheelin BORING NO.: BASE-BG49 SHEET 1 OF 1

BAKER REP.: James S. Culp

TEST BORING RECORD

PROJECT:			ne Base Bac	kground Stu		170					
PROJ. NO.:	62470-37		0450045	025	BORING	NO.:	BASE-BG50				
COORDINAT ELEVATION		EAST:	2457745		NORTH:		326066.337				
ELEVATION	SURFAC	E.	NA								
Rig: Tripo	Split	be Casing	Augers	Core	Date	Progress	Weather	(F)	Depth to Water		
Size (ID)	Spoon 1.5"			Barrel	7/12/00	(Ft.)	Cloudy	75	(Ft.) 3.1		
Length	2.0'	 			1/12/00	-1	Cititaty	13	3.1		
Type Type	Stainless			W					 		
Hammer Wt.	NA				 						
Fall	NA				1						
Remarks:	<u> </u>	<u> </u>							<u> </u>		
	SAN	MPLE TY	/PE	''''' 		D	EFINITIONS				
	S = Split				med = med	dium	ft or ' = feet				
	T = Shelb	•			v = very		bgs = below gro	ound sur	face		
	R = Air F		C = Core		lt = light		MSL= mean se	a level			
	D = Denis		Piston		dk = dark						
		No Sam	ple		NA= not a	pplicable/not	available				
	Sample	Sample							Elevation (Ft. MSL		
Depth (Ft.)	Type &	Rec.	· · · · · · · · · · · · · · · · · · ·								
	No.	(Ft.,%)						^ =			
, -	C 1	1.4		k to lt grey, trac				0.7	4		
1 _	S-1	1.4 70%		k brown, little s		04003		0.9	4		
2 2.0		1 ' 1		rown, trace silt,	collected at 0.	.U-1.U II, Dgs		2.0	1		
2 2.0			***************************************		collected at 2.	0300 has	******************************	2.0	1		
3 -	S-2	2			amp to wet at 3.			-	1		
, , , , , , , , , , , , , , , , , , , 	2.2	100%	,	,	map or more and				1		
4 4.0		200,0						$4.\overline{0}$	1		
			End of Boring	at 4.0'		•					
5									1		
]		
6 _]		
								_]		
7 🗐											
								_	1		
8									1		
<u>,</u>									1		
9									4		
70 -								_	1		

DRILLING COMPANY Parratt-Wolff
DRILLER: Brian Waters and Jim Wheelin

BAKER REP.: James S. Culp BORING NO.: BASE-BG50 SHEET 1 OF 1

APPENDIX C TECHNICAL MEMORANDUM

SUMMARY OF GROUNDWATER DATA AND AQUIFER CHARACTERISTICS MARINE CORPS BASE, CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

SUMMARY

This study examines the utility of exploratory aquifer tests (pump tests) at investigation sites across Marine Corps Base, Camp Lejeune (MCB-CL). The study reviews the available information on the relevant water-bearing layers, considers the general characteristics and applicability of aquifer tests, and concludes:

- That available information is satisfactorily complete to allow appropriate designs of groundwater systems in the main operating areas of MCB-CL;
- That quantified characterization of the water-bearing layers in explored areas of MCB-CL can be extended to other areas having similar geologic terrane;
- That exploratory tests are no longer routinely required or advisable;
- That reconnaissance testing (well-head tests or slug tests) of each newly installed or otherwise uncharacterized data station is highly advisable; and,
- That performance testing of groundwater extraction systems should be the recommended form of evaluating and adjusting withdrawal systems.

BACKGROUND

This study considers the aquifer characteristics (especially, the Coefficient of Transmissivity) and the production capacities (available discharge rates) of the two water-bearing layers relevant to the studies at MCB-CL. These water-bearing layers are the (shallow or surficial) water table and the Upper Castle Hayne Aquifer.

The water table at MCB-CL occupies the water-bearing zone within 25 to 35 feet of the surface; the Castle Hayne, immediately below this. However, the separation of the water table and the Castle Hayne is not always obvious. Usually, this separation is effected only by the low permeability material of the water table transiting to the significantly more permeable material of the Upper Castle Hayne; there is rarely an aquiclude or aquitard of vertically extensive clay separating the water table from the Castle Hayne.

The data available for this summary derive from three main sources:

- Assessment of Hydrologic and Hydrogeologic Data at Camp Lejeune Marine Corps Base, North Carolina; U.S. Geological Survey, Water-Resources Investigation Report 89-4096; 1989
- Wellhead Management Program Engineering Study 91-36; Geophex, Ltd.; 22Jan91
- Various site investigations by Baker Environmental, Inc., and reported to LANTDIV and MCB-CL

DISTRIBUTION OF DATA

The data available from the various sources have been compiled on Tables 1, 2 and 3, with Table 3 summarizing the relevant flow information. The accompanying map indicates the distribution of stations from which data are available.

The tabulated data indicate the main characteristics of each water-bearing layer:

- There is low available production from the water table.
- There is an excessive availability of production from the Castle Hayne compared to the probably acceptable levels of treatment volumes foreseeable in groundwater remediation systems.

The water table had production capacities of less than 5 gallons per minute (gpm) in all cases tested. The specific capacities of the discharge wells were always less than 1 gallon per minute per foot of drawdown (gpm/ft). The transmissivities calculated were generally near or below 1000 gallons per day per foot of drawdown (gpd/ft); only the deeper wells, which intercepted at least part of the Castle Hayne, had transmissivities in a range indicative of an acceptably producing zone. The hydraulic conductivity values were commonly in the range of tenths of feet per day (ft/d). The low production rates, low transmissivities and low hydraulic conductivities indicate that the water table is only marginally, at best, under Darcian conditions. Calculations based on these data would, therefore, be highly unreliable. However, the available information all indicate an expectably low rate of groundwater discharge, which in turn would produce only a narrow radius of effect around an individual production well:

The standard equation for calculation of the radius of capture around an individual well is r_c =720Q/ π Ti. With a discharge rate (Q) of 3 gpm, a transmissivity (T) of 500 gpd/ft and a representative gradient of 0.005, the radius of capture would be 275 ft. However, this calculation applies only to Darcian conditions in a homogeneous medium; the water table at MCB-CL is marginally Darcian and is highly non-homogeneous. The calculation of radius must, therefore, be in some degree of error, with no more usable data or calculation possible.

The Castle Hayne has production capacities generally ranging above 200 gpm. The estimated transmissivities are at least in the range of several tens of thousands gpd/ft, with specific capacities usually about 5 to 10 gpm/ft. The calculated hydraulic conductivities are usually in the scores of feet per day. The available discharge from the Castle Hayne is, therefore, much greater than that from the water table. The limiting factor in remediation schemes for the Castle Hayne then becomes the amount of water that can be treated by an affordable system, usually less than 500 gpm; this value of 500 gpm would be available from one or two wells in the Castle Hayne. The high values of aquifer parameters, the relatively low total discharge and the low number of production wells would conspire to limit the radius of effect available to a remediation scheme:

The standard equation for calculation of the radius of capture around an individual well is $r_c=720Q/\pi Ti$. With a Q of 500 gpm, a T of 50000 gpd/ft and a representative gradient of 0.005, the radius of capture would be only 460 ft.

COMPARABILITY OF DATA ACROSS MCB-CL

The stratigraphic sequences of MCB-CL containing the water table and the Upper Castle Hayne have been well characterized. The available information indicates that the lithology and the hydrologic conditions can be correlated stratigraphically across the base (Tables 1 and 2). From these correlations, aquifer performance can be predicted sufficiently for an engineering design whose final criteria for suitability are performance-based.

The upper water-bearing zone is a highly variable layering and intercalation of clay, silt and sand. This variability, however, is found within recognizable limits. These limits correspond to the range of hydrologic characteristics described previously. Similar correlation is available for the lithology and hydrology of the Upper Castle Hayne.

In areas not near stations catalogued in Tables 1, 2 and 3, a reconnaissance comparison of well-head tests (slug tests) and an examination of lithologic descriptions will likely be sufficient to support the engineering evaluation of the site. There is ample demonstration that lithology has a significant influence on the hydrology of a site, and that, for a given geologic terrane, the influence is fairly consistent. The geologic terrane of MCB-CL has been broadly characterized and correlated between lithologic (stratigraphic descriptions) and hydrologic (aquifer tests and well-head tests) sequences. Lithologic descriptions can now provide a good indication of hydrologic conditions at MCB-CL in areas of similar terrane.

GENERAL APPLICABILITY OF AQUIFER TESTS

Aquifer (pump) tests are an extremely dangerous activity at contamination sites. While the information available from aquifer tests is required for engineering design of withdrawal systems, aquifer tests should not be a reconnaissance or an initial step in the investigation. Full consideration must be made of the redistribution of contaminants expectable from the test, of the change in structural support of disposal features by relaxation or increase of hydrostatic loading, and so forth.

Consideration must also be made of alternative sources of acceptable data on the aquifer. In the case of MCB-CL, alternatives to exploratory aquifer tests are available from the tabulation and correlation of aquifer characteristics, production performance and geologic terrane presently available.

From the available information and in light of the relative consistency of the geologic terrane of MCB-CL, exploratory tests at MCB-CL are not generally required. Therefore, exploratory tests are not advisable and should not form part of the initial investigation of a site. While they may be useful in certain circumstances after the initial investigation of a site, they should not, in the general case, be part of the investigation. Sufficiently satisfactory information is presently available to allow the initial engineering design of a groundwater response.

While exploratory aquifer tests are not advisable, performance tests of a newly installed system are highly recommended. These tests, to some extent, are a normal part of the initial operation of a system. Only minor additional monitoring and modification of the system during operation would provide data directly relevant to the long-term operation of that system.

In the Coastal Plain of MCB-CL, the information from an exploratory data station not coincident with the long-term extraction system is not fully transferable. That is, if the test station and the

recovery station are not the same, the aquifer parameters and calculations based on those parameters will differ. This means that data from an exploratory station are no more reliably usable that the data presently available, unless the exploratory station is collocated with the recovery system. However, if the exploratory and recovery stations are identical, and considering that alternative sources of acceptable data on the aquifer are available and that a performance test must be run as part of the initial operation of a recovery system, the exploratory test represents a superfluous duplication of effort.

TABLE 1
CAMP LEJEUNE PUMP TEST DATA

	ĺ		Total			Water-level	Pumping Rate		Specific	Γ		T T	
	Well	Well	Aquifer	Screened	Screened	Drawdown	(Recovery	Duration	Capacity	т	к	s	
	Depth	Diameter	Thickness	Length	Interval	During Pumping	wells)	of Pumping	(pumping rate/	(square ft/	(ft/day)	-	Soils
Well Number	(ft,BGS)	(in)	(ft)	(ft)	(ft,BGS)	(ft,BGS)	GPM	(min)	drawdown)	day)	(*)/	İ	(fr.BGS)
013RW-01*	23	2	15	- 20	3-23	8.773	1	480	0.11	7,17	0.48	NA.	0-10 silt/clay, 10-23 sand.
013MW-18	13	2	15	10	3-13	0.297	NA	480	NA	105,98	7.06	1.40E-02	0-7 silt/clay, 7-13 sand.
013MW-21	14	2	, 15	10	4-14	0.31	NA	480	NA	82.27	5,48	2.77E-02	0-7 silt/sand, 0-14 clay/silt
								·				1 2.772 02	1 0-4 shusand, 0-14 clay/sht
08RW-01*	15	2	9	9.1	2.45-11.55	6.38	0.5	485	0.08	5.30	0.59	NA	
108MW-04		2	9				NA	485	NA.	118,63	13.18	1.33E-02	very fine sand
108MW-15	12.5	2	9	9.03	2.79-11.82		NA	485	NA	56.78	6.31	7.33E-03	0.0
			7-7-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1							20.70	0.51	1.335-03	0-8 sand/silt, 8-10 silt/clay
109MW-15		2	15			0.939	NA	460	NA	76.26	5.08	1.11E-02	
109MW-17	14.5	2	15	10	4.5-14.5	0.545	NA	460	NA NA	163,10	10.87	7.30E-03	
109RW-01*	15	2	15	9.5	2-11.5	6.265	3	460	0.48	7.80	0.52	7.305-03 NA	0-15 fine sand
	····	·	***************************************					400	0.70	7.00	0.32	NA	0-4 sand, 4-8 silt, 8-15 sand
W-01* (Drawdown, Theis)	21.8	2	50	19.2	2-21,2	9.53	3	475	0.31	200,02	4.00		
W-01° (Drawdown,Cooper)				- 17.5		7,03		4/3	0.31	161.86	4.00	NA NA	0-10.5 sand/silt, 10.5-15 sand/clay, 15-21.5 sand/clay, 21.5- sand
W-01* Recovery(Theis)											3,24	NA NA	
OW-01 (Drawdown, Theis)	30.3	2	50	4.8	24.9-29.7	0.02	3	475	NA	106.06	2.12	NA SOT OR	
DW-01 (Drawdown, Cooper)				'''				4/3	NA NA	7080.48	142.00	4.52E-03	0-4 sand/silt, 4-10.5 clay, 10.5-15.5 sand/silt,15.5-20.5 clay, 20.5-on sand
OW-02 (Drawdown, Theis)	30	2	50	4.7	24.7-29.4	0.52	NA	475		7099.20	142	4.51E-03	
OW-02 (Drawdown, Cooper)					471174717	V.J2	11/	4/3	NA NA	5398.56	108.00	1.51E-03	0-3 sand and silt with clay layers, 3-11 sand and silt, 11-30 sand with some limited clay l
OW-03 (Drawdown, Theis)	30	-,-	50	4.9	24.5-29.4	0.47		176	NA NA	5400,00	108	1,51E-03	
OW-03 (Drawdown, Cooper)	~~		30	4.7	44.3-LY.4	0.47	NA NA	475	NA	2952.00	59.00	7.48E-02	0-6 sand and silt, 6-12 sand, 12-23 sand/clay, 23-30 sand
21. 02 (Diamonii,Cooper)		1			1				NA	3225.60	64	5.85E-02	

⁼ Transmissivity

⁼ Hydraulic Conductivity

[:] Storativity

[·] Pumping well

^{· -} Not applicable

TABLE 2
HYDRAULIC CONDUCTIVITY TEST RESULTS (SLUG TEST)

			Saturated											
	Well	Well	Aquifer	Screened	Screened	K								
Well	Depth	Diameter	Thickness*	Length	Interval	Rising	Soils							
Number	(ft,BGS)	(in)	(ft)	(ft)	(ft,BGS)	(ft/day)	(ft,BGS)							
013MW-03	14	2	1	9.8	4-13.8	0.75	0-6 clay, 6-14 silt							
013MW-04	14	2	8.13	9.8	4-13.8	0.27	0-8 clay, 8-14 silt							
013MW-11	16	2	9.14	10	6-16	0.37	0-4 sand/silt, 4-14 clay, 14-16 sand							
013MW-21	14	2	9.2	10	4-14	0.46	0-4 silt/sand, 4-14 clay							
108MW-08	12.8	2	8.83	9.7	2.7-12.4	0.59	0-8 very fine sand, 8-12 clayey peat, 12-13 sandy clay							
108MW-09	12.8	2	7.81	9.7	2.8-12.5	0.53	0-13 silt/sand							
108MW-13	10.8	2	NA	9.02	0.69-9.71	0.061	0-2 very fine sand, 8-9.5 sandy clay							
108MW-17	13.1	2	NA	9.03	3.39-12.42	0.59	0-8 fine grained sand, 8-9 clayey peat, 9-12.5 sandy clay							
	. 	····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
109MW-17	14.5	2	9.04	10	4.5-14.5	9.00	0-15 fine sand							
109MW-18	14	2	10.19	10	4.5-14.5	5.70	0-3 sand, 3-10 silt, 10-14 sand							
110MW-07	11.96	2	9	9.8	1.5-11.3	0.0115	0-2 clay/silt, 2-4 clay/sand, 4-6 sand, 6-10 silt/clay, 10-14 silt /sand							
110MW-09	14.2	2	9.47	9.8	3.8-13.6	0.16	0-6 sand/silt, 6-9 clay/silt, 9-12 sand/silt, 12-14 clay							
110DW-03	30	6	22.04	4.9	24.5-29.4	1.07	0-3 sand, 3-4 clay, 4-10 sand/silt, 10-12 sand, 12-13 clay, 13-22 silt/clay, 22-30 sand							
		,												
41GW-07	20.5	2	12.03	10	10.5-20.5	1.15	1-5 silty sand, 5-9 clay, 9-10 silty sand, 10-12 fill, 12-16 silty sand with 1 ft clay layer, 16-21 sand							
41GW-08	15	2	9.48	10	5-15	0.14	0-1 silty sand, 1-6 sand, 6-14 clay with sand and silt, 14-16 silty sand							
41GW-09	21	2	11.89	10	11-21	3.67	0-5 clay and sand, 5-21 silty sand							
41GW-10	13	2	8.59	10	3-13	0.94	0-2 silty sand, 2-7 sand, 7-9 silty sand and clay, 9-12 lithified sandstone, 12-13 sand. 13-14 lithified sandstone							
41GW-12	16	2	12.45	10	6-16	4.57	0-4 silty sand, 4-14 sand, 14-17 lithified sandstone							
		····												
69GW-09	20.5	2	14.22	10	10.5-20.5	1.7	1-4 Sand/silt, 4-10 clay some sand, 10-21 sand/silt							
69GW-10	16	2	10.5	10	6-16	0.17	1-17 sand/silt							
69GW-12	12.5	2	11.27	10.5	2-12.5	0.12	0-13.5 sand/silt							
69GW-02D	125	2	22.1	10	40-50	0.29	0-125 silty sand **							
69GW-12D	58	2	53.83	10	48-58	6.66	0-58 silty sand **							
	,				,									
74GW-03A	18	2	13.58	10	8-18	0.59	0-17 silty sand, 17-18.5 sandy clay							
74GW-06	16.5	2	8.18	9.74	15.5-26	6.33	1-26 sand/silt							
74GW-08	23	2	10.51	10	13-23	3.55	0-1 silty sand, 1-24 sand							

^{*} Values taken from AQTESOL results. (Bottom of screened interval- water level)

. . _ _ _

^{**} Due to depth, soils were very generally described.

K = Hydraulic Conductivity

TABLE 3

BARONE: 8SEP94:CL5-1A1:1/5

3-CL5	CTO-232	CL5-1B1.wks		8SEP94	MCB-CAMP L	EJEUNE
STATION	b ft	gpm Q	Sc gpm/ft	T ft-sq/d	T gpd/ft	K ft/d
013RW-01 013MW-1 013MW-2 013MW-04 013MW-11 013MW-21 41GW-07 41GW-08 41GW-09 41GW-10	15 15 15 1 8 9 8	1.0	0.11	7.2 106.0 82.3	54 793 615	0.5 7.1 5.5 0.8 0.3 0.4 0.5 1.2 0.1 3.7 0.9 4.6
69GW-09 69GW-10 69GW-12 69GW-02DW 69GW-12DW 74GW-03A 74GW-06 74GW-08	۵	0.5	0.00	F 2		1.7 0.2 0.1 0.3 6.7 0.6 6.3 3.6
3MW-0 108MW-1 108MW-08 108MW-09 108MW-13 108MW-17 109MW-1	9 9 9 9 8 8 15	0.5	0.08	5.3 118.6 56.8	40 887 425	0.6 13.2 6.3 0.6 0.5 0.1
109MW-1 109RW-01 109MW-17 109MW-18	15 15 15 15	3.0	0.48	76.3 163.1 7.8	570 1220 58	5.1 10.9 0.5 9.0 5.7
110RW-01 110RW-01 110RW-01 110DW-01 110DW-02 110DW-02 110DW-03 110DW-03 110DW-03 110MW-07 110MW-09 110DW-03	50 50 50 50 50 50 50 50 9 9	3.0 3.0 3.0	0.31 0.31	200.0 161.9 106.1 7080 7099 5399 5400 2952 3226	1496 1211 793 52962 53102 40381 40392 22081 24127	4.0 3.2 2.1 142.0 142.0 108.0 108.0 59.0 64.0 0.1 0.2 5.8

BARONE:8SEP94:CL5-1A1:1/5

BARONE:8SEP94:CL5-1A1:2/5

STATION	b	Q	Sc	т	Т	к
	ft	gpm	gpm/ft	ft-sq/d	gpd/ft	ft/d
BB-43	275	170	5.0	8900	66572	32.4
BB-44	275	450	10.0	17900	133892	65.1
BB-222	275	329	9.4	10600	79288	38.5
HP-612	285	275	5.4	7900	59092	27.7
HP-614	285	323	4.9	6600	49368	23.2
HP-621	300	200	9.1	24500	183260	81.7
HP-628	320	160	3.4	6400	47872	20.0
HP-629	300	210	5.7	7900	59092	26.3
HP-634	300	163	4.5	4300	32164	14.3
HP-636	300	211	6.8	6900	51612	23.0
HP-643	295	278	5.3	9700	72556	32.9
HP-644	300	246	4.3	8100	60588	27.0
HP-646	305	304	10.6	20200	151096	66.2
HP-647	305	500	9.8	18700	139876	61.3
HP-648	310	250	2.9	5600	41888	18.1
HP-649	310	257	2.6	5000	37400	16.1
HP-651	305	270	3.8	7300	54604	23.9
HP-652	320	218	2.2	4400	32912	13.8
HP-663	325	350	4.8	6400	47872	19.7
HP-699	275	250	5.7	7700	57596	28.0
HP-700	270	250	6.8	11500	86020	42.6
HP-701	275	250	7.2	12400	92752	45.1
HP-705	295	250	9.0	13100	97988	44.4
HP-706	300	250	3.8	4700	35156	15.7
HP-709	310	200	4.4	8500	63580	27.4
HP-710	310	200	5.1	9900	74052	31.9
HP-711	320	200	6.8	10700	80036	33.4
LCH-4006	295	540	10.0	14500	108460	49.2
LCH-4007	295	275	11.8	13700	102476	46.4
M-267	260	170	7.7	10300	77044	39.6
M-628	260	70	3.0	6100	45628	23.5
RR-229	290	429	12.2	19400	145112	66.9
TT-25	280	150	5.0	7200	53856	25.7

STATION	PUMPING LEVEL	gpm	Sc gpm/ft
HP-602	44	154	3.5
HP-603	30	129	4.3
HP-606	38	267	7.0
HP-607	46	246	5.3
HP-608	21	208	9.9
HP-609	45	199	4.4
HP-610	14	214	15.3
HP-613	17	157	9.2
HP-616	15	178	11.9
HP-620	9	224	24.9
HP-622	55	330	6.0
HP-623	30	210	7.0
HP-628	45	172	3.8
HP-629	45	216	4.8
HP-632	21	224	10.7
HP-633	18	205	11.4
HP-634	. 36	219	6.1
HP-635	. 33	151	4.6
HP-636	35	149	4.3
HP-637	40	130	3.3
HP-638	84	201	2.4
HP-639	52	[]	0.0
HP-640	28	210	7.5
-641	44	351	8.0
-642	32	[]	0.0
HP-643	35	269	7.7
HP-644	52	230	4.4
HP-645 HP-646 HP-647 HP-648 HP-649	40 11 26 84	192 154 302 263	4.8 14.0 11.6 3.1
HP-650 HP-651 HP-652 HP-653	80 75 69 82 29	100 480 242 216 197	1.3 6.4 3.5 2.6 6.8
HP-654 HP-655 HP-660 HP-661 HP-662	30 37 53	175 [] 150 275 148	5.8 ERR ERR 7.4 2.8
HP-663	23	100	4.3
HP-698	33	216	6.5
HP-699	21	140	6.7

STATION	PUMPING LEVEL	Q gpm	Sc gpm/ft
HP-700	39	192	4.9
HP-701	36	236	6.6
HP-703	33	293	8.9
HP-704	38	159	4.2
HP-705	25	214	8.6
HP-706	33	214	6.5
HP-707	51	50	1.0
HP-708	42	219	5.2
HP-709	52	239	4.6
HP-710	29	115	4.0
HP-711	56	235	4.2
HP-5186	38	336	8.8
LCH-4007	34	150	4.4
LCH-4009	22	349	15.9
TT-23	36	160	4.4
TT-25	22	130	5.9
TT-26	32	127	4.0
TT-31	28	111	4.0
TT-52	18	236	13.1
TT-54	20	119	6.0
TT-67	29	119	4.1
RR-45	11	192	17.5
RR-47	5	140	28.0
RR-97	14	170	12.1
RR-229	35	[]	0.0
BB-44	11	125	11.4
BB-47	6	341	56.8
BB-218	17	192	11.3
BB-220	13	119	9.2
BB-221	19	230	12.1
TC-325	8	100	12.5
TC-502	1	180	180.0
TC-504	35	203	5.8
TC-600	32	172	5.4
TC-604	16	137	8.6
TC-700	28	125	4.5
TC-901	37	[]	0.0
TC-1000	25	110	4.4
TC-1001	16	160	10.0
TC-1251	6	150	25.0
TC-1253	5.	128	25.6
TC-1254	3	122	40.7
TC-1255	36	104	2.9
TC-1256	48	104	2.3
	30	100	د. ب

BARONE:8SEP94:CL5-1A1:5/5

STATION	PUMPING	Q	Sc
	LEVEL	gpm	gpm/ft
AS-108	8	226	28.3
AS-131	11	310	28.2
AS-190	60	220	3.7
AS-191	16	220	13.8
AS-203	19	220	11.6
AS-4140	. 6	110	18.3
AS-4150	10	128	12.8
AS-5001	27	185	6.9
AS-5009	53	111	2.1
BA-164	21	214	10.2
BA-190	17	303	17.8

APPENDIX D CHAIN-OF-CUSTODY RECORDS

CHAIN-OF-CUST	ODY RECORD
---------------	------------

No.

	a division of Liberty Analytical Corp. BACKGROUND STUDY							Client Address :									Point-of-Contact :													
				Vlad					ooip,					<u> </u>		BAK	(=R	<u> </u>	- 11	IIR	۸٥	ΜĖ	15	AL.		JIM (ULP				
		J		viau ary,						Carrier		47	EΧ			42	o K	<u> </u>	<u>Sa.</u>	12		(r)		Te	Telephone No. : +12/269- 709 8				
				800						Airbill I	Vo.: 81	8028	32698	7/76	165	Coa	AOAG	ري	S	PA	9	51	08		Se	ampl	ing (complete? For N (see Note 1)		
											er Name		IARIO	ر کرر		Sampl	er Signa	atur	э;		C.	JK			Project-specific (PS) or Batch (B) QC ?					
BO	#1			ace '					Trip Blan	k	BOX #2 A. HCl + Ice F. Ice Only B. HNO3 + Ice G. Other C. NaOH + Ice H. NaHSO4 + Ice D. H2SO4 + Ice I. ZnAc+NaOH + I					BOX #3 F. Filtered						Box	#4		High		Box #6 C, CLP 3/90 T. TCL			
				ınd \		r		7. (U. Unfiltered								M.	Medi	um	S. SW-846				
1				hate	:				Waste											1		L.	Low		W. CWA 600-series					
ŀ			Rins						Other F	ANK															O. Other					
<u></u>	5. Soil / Sediment / Sludge らんみいに					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	E. Unpreserved				· · · · · · · · · · · · · · · · · · ·	<u> </u>	····		<u>.</u>			<u> </u>												
											Box #1	Box #2	Box #3	Box #4	Box #5	T	1	T	П	ो	. [Т	П		T					
	(9 ct			ple rs m		imu	um)		Date:Year. 2000	Time	Matrix .	Preservative	Filtered / Unfiltered	Expected Conc.	Vethod	No. of Bottles	Use for Lab QC (MS or DUP)	/OA	svoc	esticide	PCB Herhicida	Metals / Mercury	Cyanide	08G/1PH		I		Remarks / Comments (see Notes 2 & 3)		
A	> 0	8	R	13	0	1			7/15	08:15			-			1			"			1		10	T		\dashv			
A	OC	9	R	B	0	2			1	508:15			Printerior.			1				十	7			+	T		1			
A	1	1-	1	T	1	3			7/15	15:35	4		-			,				7			IT	-	\dagger		+			
1 1	0 (1	1		4				08:35						,				十	+			\top	十		\dashv			
1	00	7		\mathbf{r}						08:30						1				十	\dashv		╂═╂	+	╁╌	M	+			
1 1	0 0	1	1	1	0	Ì	1		1	08:20										十	+	 		╁	+	1	_			
ГТ	> C	Т		R			_	\vdash		야: 30						 	 	\vdash	+	+	╁	+=	\vdash	-	+	17	\dashv			
\Box		1	Ĭ,				1	1	i			 				 	<u> </u>		\dashv	\dashv	-	-	╂	- -	-	4				
\sqcap	4	╫	+	十	1/2	<u>.</u>	6	┝	1116	09:50	-	 		ļ				H	-	+		4	-	- -	-		-			
$\vdash \vdash$	+	┿	┼-	╀	-		├-	_	-/-	╀╧╌	 -	 		;	<u>-</u>	<u> </u>			-	-		<u> </u>		4	<u> </u>					
			<u>L</u>	<u></u>		Ŀ	<u> </u>	<u> </u>		<u> </u>	<u> </u>		\perp																	
	nts S	•	•					**********			<i></i>	••••			3.									<u> </u>				Temperature°C		
						ndi	tion	<u>? \</u>	or N	Descril	e Proble	1 (_		<u> </u>													
	elinqi			: (Sig				• /	(Ce.	6		,	#2 Relin		By: (Sig)					Date	:		#3 R				(Sig)	Date:		
Company Name: DXKCX Time: 1700 Company Na #1 Reserved By: (Sig) FCD EX Date: 7/17/66 #2 Received										Time			Com					Time:												
#1 Reserved By: (Sig) FCD EX Date: 7/17/3			77-			Sig)	1				Date					elved By: (Sig) Date:														
COM	hally	1401(1	. .		···		-		:		inne.	100	Compan	y Name:	·	- No.				Time	:		Com	any N	lame	:		Time:		

COMPUCHEM
a division of Liberty Analytical Corp.

			1	
CHAIN	-OF-C	USTO	DY REC	:ORD

No.

COMPUCH		Project Name: MCG CLET Client Address:						<u> </u>	\D				110.			
a division of Liberty Analytic	cal Corp.	ACKGROU				1KER			\				- Poin	Point-of-Contact :		
501 Madison Avenue			<u>ت</u> ک		4			<u> </u>					┼		Ja Cup	
Cary, NC 27513 1-800-833-5097	Airt	III No. :8180;						<u>ري د</u>			<u>. j.</u>				No.: 412/269-2090	
	Sar	npler Name :	VAR!	10//6/	25 0	ر کے ال oler Signa	00	<u> </u>		MA	15/	108			complete?(Y)or N (see Note 1)	
BOX #1 1. Surface Water	6. Trip Blank	BOX #2 A. I	ICI + Ice	F. Ice Only	Joann	BOX #3				JK					ecific (PS) or Batch (B) QC?	
2. Ground Water	7. OII		INO3 + Ice	G. Other		BOX #3		. Filte J. Unfi			Box	#4	H. Hig	•	Box #5 C. CLP 3/90 T. TCL	
3. Leachate	8. Waste	C. 1	NaOH + Ice	H. NaHSO4	lce			J. UNII	nerea		1		M. Me		S. SW-846	
•	9. Other	D. I	12SO4 + Ice	I. ZnAc+NaO		1							L. Lov	٧	W. CWA 600-series	
5. Soil / Sediment / Sludg	le		Inpreserved								1				O. Other	
		Box #1 Box	x #2 Box #3	Box #4 Box	#5				т т							
Sample ID (9 characters maximum)	Date:Year_2000	Matrix	filtered	Expected Conc.	ottles	Use for Lab QC (MS or DUP)		Pesticide		Herbicide Metals / Mercury	ide	10C/10X 0&G/TPH	3	4	Remarks / Comments (see Notes 2 & 3)	
			E E	N N N N N N N N N N N N N N N N N N N	2	Use (MS	Q E	8 8		青青	Cyanide					
A0 C8 BG 1 1 0	0 7/14 15:	20 5 E	=		1					1				才		
	5 7/14 15:4	17 5 6	<u> </u>		1						11	\top		#		
	0 7/14 16:									1	11			#		
AOC 8BG 1202	2 7/14/6:	26 5 6			1									 		
A 0 C B A G 1 2 0 2	2714 16:	156				Die	\top									
A0C8160600	7/14/7:1	0 5 6	-				1	††	_	1		$\dashv \dashv$		H	DUPLICATE	
AOCRBGOG	7/4 17:4	1 1			1		十	+		1		\dashv		╁┼		
AOC 8BG 0400							\dashv	╁╁	\dashv	1		+	+	╂╌		
A0 C 8 B G 0 4 0 C						-	十	╁╫	-	-	\vdash	┼┤	+	$\vdash\vdash$	NS/USA	
	5 7/14-08:0					MS/MS	ᆔ	+	\dashv	1	-	╂╢	-	- -	MHARALLAHAMA MS (MSD	
Clients Special Instructions:	-1 7.17 () 6.5		<u>- L</u>	L		<u> </u>		Ш					<u> </u>			
Lab: Received in Good Condition?	Yor N Desc	ribe Problems, if	anu.					··		=					Temperature °C	
#1 Relinquished By: (Sig)	Kli G	Date: 7/17/0		tuiched By: /Sid	 ,				.			******	<u> </u>			
Company Name: LAK	ER O	Time: / 7 00	Company		<u>'</u>			Date Time		- 1			hed By:	(Sig)	Date:	
#1 Received By: (Sig) /=ED		7.7		ved By: (Sig)		;		Date			Comp				Time:	
Company Name:		Time: 1700	Company					Time			Comp		By: (Sig	3)	Date:	
** * ** *** ****					-										Time:	

COMPUCHEM a division of Liberty Analytical Corp.

Project Name: AC & CLET Client Address Company Name: Temperature Point-of-Contact CLET Client Address Company Name: Temperature Point-of-Contact CLET Carrier Fig. D C X Alpi No. Point-of-Contact CLET Carrier Fig. D C X Alpi No. Point-of-Contact Client Address Clie	COMPUCHEM			CH	AIN-C	DF-CL	JST	YQC	RE	CO	RD						N	0.	051	480	
SOM Madison Avenue		Project N	Name: /	MCB C	LEJ	•	Clien	t Addre	ss:						I	Point-	-				
Carry NC 27513		BAC				<u> </u>	BI	AKEN	2	Œ	11	VIK	On	٠.	7				Cur	~	
Sample Date: Sample Name: Date: Da											K		44.4	_	-	Teleni					20-0
Sample Name Sample Signeture		Airbill No	D.: 848	0283269	787/76	65															
1. Surface Water 6. Trip Blank 2. Ground Water 7. Old 2. Ground Water 7. Old 3. Laschate 8. Waste 8. Waste 8. Waste 9. Other 1. Sold		Sampler	Name:			7	Samp	ler Sidn	ature	<u> </u>		P		<u> </u>		Salip	ing c	complet	e//Y or N	(see	Note 1)
S. Soll / Sedment / Sludge	Of The Diate		BOX #2 A.	HCI + Ice	F. Ice O	nly	<u></u>				red				!	TOJEC	t-spe				
Sample ID (9 characters maximum) (9 characters maximum) (9 characters maximum) (9 characters maximum) (9 characters maximum) (10 c) (10						r		ĺ				ı	"	νΑ π=		_		Box #			T. TCL
Sample ID (9 characters maximum) Sample	0.7740,0	i															luili	1		- ••	
Sample ID (9 characters maximum) Sample ID (10 characters maximum) Sample ID (10 c					I. ZnAc+	NaOH +	Ice	l							_	. 2011					enes
Sample ID (9 characters maximum) A D C 8 A G O 5 O 0 7/15 09:16	5. com/ Secument/ Studge		E.	Unpreserved				<u> </u>										1	O. Our	데	
A O C 8 A G O S O O 7/15 09:16 S E - 1			Box #1 Bo	x #2 Box #3	Box #4	Box #5			П	\top		Т	Ţ.,	П		_					
A O C 8 A G O S O O 7/15 09:16 S E - 1	Į Š			g g				1										p	n	7	11
A O C 8 A G O S O O 7/15 09:16 S E - 1	Sample ID N		1) g		Ø	8				1				1		' '	76C		7
A O C 8 A G O S O O 7/15 09:16 S E - 1	(9 characters maximum)		;		Q		offe	g g				ا ا		۱×۱	χ	I		1	Remarks	/ Com	ments"
A O C 8 A G O S O O 7/15 09:16 S E - 1	' `	ا و	Ě	g g	ecte	8	of Di	9 P				S S	g g	151	ŧI.	1 1		1	(see N	otes 2	& 3)
A O C 8 A G O S O O 7/15 09:16 S E - 1			Maj (<u> 8</u>	Met	2	Use (MS	ğ	3 3	2	e et	Ě	8	ပ္တ	14	-				
A 0 C 8 B G 0 B 0 0 7/15 16:20 5 E — 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AOC 8 0 6 0 5 0 0 7/15	09:16	5 0	= -			1								4	\dagger	\dashv	 			
A 0 C 8 B G 0 B 0 0 7/15 16:20 5 E — 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 0 C R 19 0 5 0 4 7/15	09:25	- 1	=			1			+	\vdash	+	+	\vdash	╁		_	 			· · · · · · · · · · · · · · · · · · ·
A O C 8 B G O 8 O 1 7/15 16:22 5 E — 1	4 1 1 1 1 1 1 1 1 1 1				 				-	╫	╁┼		1_	\vdash	- -	17		-		***************************************	
							- 1			+-	\vdash	- -	1			14		ļ			
A O C 8 6 1 A O 1 7/15 12:30 S E	1.1 1 1 1 1 1 1 1 1 1								_		-	<u> </u>	44		\bot	14		<u> </u>			
A O C 8 B G O Z O O 7/15 /0:22 5 E - I A O C 8 B G O Z O S 7/15 /0:45 5 E - I A O C 8 B G O Z O S 7/15 /0:45 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 5 E - I A O C 8 B G O I O O 7/15 09:42 6 E - I A O C 8 B G O I O O 7/15 09:42 6 E - I A O C 8 B G O I O O O 7/15 09:42 6 E - I A O C 8 B G O I O O O O O O O O O O O O O O O O O			2 6				\perp					J	Ł								
A O C 8 3 6 0 2 0 5 7/15 0:45 5 E - 1 1			5 6									-	1								
A O C 8 A G O I O O 7/15 09:42 S E - I I A O C 8 A G O I O A 7/15 Io :03 5 E - I I A O C 8 A G O I O A 7/15 Io :03 5 E - I I I I I I I I I I I I I I I I I I	A 0 C 8 B G O 2 0 0 7/15	0:22	5 6	<u> </u>									打		1			1			
A O C 8 A G O I O O 7/15 09:42 S E - I I A O C 8 A G O I O A 7/15 Io :03 5 E - I I A O C 8 A G O I O A 7/15 Io :03 5 E - I I I I I I I I I I I I I I I I I I	A00836020571151	0:45	5-6												1		┪	 			
Clients Special Instructions: Lab: Received in Good Condition? Yor N Describe Problems, if any: #1 Relinquished By: (Sig)			56				-		_		+	+			+	+++	- -	 	**************************************		
Clients Special instructions: Lab: Received in Good Condition? Y or N Describe Problems, if any: #1 Relinquished By: (Sig)							-		+	+	-	+-	$\left\{ \cdot \right\}$	-	+	14		 			
Lab: Received in Good Condition? Yor N Describe Problems, If any: #1 Relinquished By: (Sig)		<u> </u>			<u> </u>						_L			Щ.		1		<u> </u>			
#1 Relinquished By: (Sig)		Describe P	Problems. I	f anv:									·					Те	mperatu	re	°C
Company Name: Company Name: Company Name: Time: Too Company Name: Time: Company Name: Time: Time: Company Name: Time: Company Name: Time: Company Name: Time:													Ī		\	·		······································			
#1 Received By: (Sig)		2	•			· (0:8)			·				i i				Sig)			Date:	
Company Name: Time: (70) Company Name:	#1 Received By: (Sig)			(ia)	· .										 -		************	Time:	
	Company Name:		1 /			×/		١ .		`					-					Date:	

Note (1): If "N" lab will hold samples to await remainder of project-maximizing batch size and minimizing QC ratio; if "Y" lab will begin processing batches now. Note (2): Samples stored 60 days after date report mailed at no extra charge.

Note (3): All lab copies of data destroyed after three years.

M Corp.

CHAIN-OF-C	USTODY RECORD	No. 051481
Project Name : MCB CLET	Client Address :	Point-of-Contact :
BACKGROUND STUDY	BAKER ENVIORON.	TIM CULD
Carrier: /=co Ex	420 ROUGER ROAD	Telephone No.: 412/264-2092
Airbill No : 42/8020 37/0 87/7//	C - 4.45 - 14.4 - C - 4.5 - 4.5	

	501 Madison Avenue					ND_		<u> </u>		KE,				<u> </u>								in luc	<u>. P</u>		
	Cary, NC 27513	 	arrier :			EX		,	42			<u>ت ۲</u>			Qε	24	D		Tel	epho	ne N	o.: 412/26	7-20	340	
	1-800-833-5097					<u> 3269 8</u>	7	65	$\overline{}$	RADI			<u></u>	P		_	7/0	8	Sar	nplin	g co	omplete?∕Yor N	(se	e Note	1)
BOX #1	4.0.4.1.1.1.1		_	Name		JARI		···	Sampl	er Signa				6	J	K			Pro	ject-	spec	ific (PS) or Batch	(B) Q	C ?	
ROX #1		Trip Blank		BOX #2			F. Ice O			BOX #3	1	F. Fil	tere	d		Bo	x #4		H. H			Box #5 C. CLP			CLP
	2. Ground Water 7.		}		B. HNO		G. Othe	r		1		U. Ur	nfilte	red		1			M. N	/lediu	m	s. sw-			
		Waste	1			H + Ice	H. NaHS												L. Lo	w		W. CW		eries	
		Other			D. H2S	04 + Ice	I. ZnAc+	NaOH +	lce	j						1						O. Othe			
	5. Soil / Sediment / Sludge				E. Unpr	eserved	·			<u> </u>															
		T . T		Box #1	Box #2	Box #3	Box #4	Box #5	Ι	T			Т			T-	T					/			
(9 ch	Sample ID aracters maximum)	Date:Year. 2000	Time	Matrix	Preservative	Filtered / Unfiltered	Expected Conc.	Method	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	svoc	Pesticide	CB terbicide	Metals / Mercury	Cyanide	roc / rox	O&G/TPH		I		PAGE Remarks (see N	/ Con	 nment	_
Aoc	8860900	711514	.48	5	ع				1			7	1						\neg	士	┪		<u>بر</u>		14.40° (14.00°
Aoc	8 160903			5	Œ				1		\prod	7	†	1		1		+	7	1	†			··········	
1 1 1	8860300	1 1	1	-	E				i				1	1	Ĺ	1			1	+	十				
	8350201	I		5	Œ				1			\top	1	+	1	力		\dashv	十	+	+-				
	8860700		- 1	(-	\in				<u> </u>			\top	T	十	1	十		\dashv	+	1	+				
1.11	8360702	1 ' }	1	-	سي				1			\top	+	\dagger	1	+		1	\dashv	+	+				
1.1	8351306	1 1	1		É	-			`			\dashv	\dagger	十		_	Н	\dashv	+	4	+				
1.11	8361301			5	بيح				,		\Box	十	+	十	1	 -		ᅱ	+	4	╁				,
		7/15/12		5	سيي	-			1		H	\dashv	+	+	1	 -		\dashv	+		+		·····		
AUC		7/15/12	. [5	<u> </u>				,			\top	1	十		\vdash		1	+	+	╁			····	
	ecial Instructions;	1 1 11.	~			<u></u>	L			L	لـــا		L_		1.	ــــــــــــــــــــــــــــــــــــــ		L							
							·	·														Temperatu	re	0	<u>C</u>
	ived in Good Condition?	rorn D	7	Problem			······································					····				:				-					
#1 Relinqu	1 Relinquished By: (Sig)				ممكن	#2 Relind	ulshed B	y: (Sig)				D	ate:			#3	Relin	quisi	ned E	3y: (S	lg)		Dat	te:	
Company I			Time:		Company	Name:					Т	ime:			Cor	npar	y Na	me:				Tin	ne:		
	ed By: (Sig)	/ C	Date: 7/	17/00	#2 Recei	ved By: (Sig)				D	ate:	·		#3	Rece	lved	Ву: (Sig)			Dat	te:		
Company I	Name:	· T	<u>Γime: /-</u>	700	Company	/ Name:					T	lme:			Cor	npan	v Na	me:				Tim	30'		

Note (1): If "N" lab will hold samples to await remainder of project-maximizing batch size and minimizing QC ratio; if "Y" lab will begin processing batches now. Note (2): Samples stored 60 days after date report mailed at no extra charge.

Note (3): All lab copies of data destroyed after three years.

CHAIN-	OF-CL	JSTO	DY F	REC	ORD

No

	Project Name : MC & CLET													Addee			<u> </u>	<u> </u>							146									
		a d	ivisi	on o	of L	ibert	y Ai	nalyt	ical	Corp.					8 S		V		t Addre							·		Poir	nt-o		ntact :	_		
٠,			50	01	Mad	osit	n A	ven	ue			arrier					,		Kén		<u></u>	<u>\(\) \</u>	VIA				_			_	Tian	<u> (</u>	Lp	
								513							<u> </u>			42		Ro					K T			Tele	pho	ne N	10. : A1	2 /269		78
				1-	800	-83	3-5	097							3269		6/65		CADR			_/	DA		151	60	<u>'</u>	San	nplir	ng c	omplete	?\Y)or N	l (see	Note 1)
ВС	Y #		1 6	20.00		Wa				T-1- 01-		impie	r Name	***************************************	1ARIO			Samp	ler Sign				٠ تنه	JIC								or Batc		
١٣	Л П	•				vva Wal				Trip Bla	nk		BOX#	2 A. HCI		F. Ice C	•		BOX #	3	F. F	iltere	ed		Во	x #4		Н. Н	igh	-		C. CLP		T. TCL
					una :hate		er			Oll			Ì)3 + Ice	G. Othe					U. U	Jnfilt	ered					М. М	-	m		S. SW-		1. 102
				.eac Rins						Waste					H + Ice		SO4 + Ice		1									L. Lo					/A 600-se	ries
ŀ						din.	ant /	Sluc		Other					04 + Ice	I. ZnAc	+NaOH +	ice														O. Oth		
<u>ـــا</u>			<u> </u>	1011	7 36	unn	ent /	Siuc	196	·····			<u></u>	E. Unpi	reserved	·			<u></u>						L						1			•
l ·													Box #1	Box #2	Box #3	Box #4	Box #5		T	\Box	T			Т	Τ									
								٠		700C					2	1		-	į									1			PAG	ie 4	1 of	4
			S	m	nle	ID				n					lige	ဋ		ø	8					Ę										. —
l	(9	cha						um)						Į į	5	ğ		, ±×	157					Jero Jero	1	×	T		E		R	emarks	/ Com	ments
	,-	••••		,,,,,	•		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	u111,		١٤		6)	<u>خ</u> .	\tilde{\xi}	8	<u>원</u>	8	Ã	2 2		6	횴	iş.	1	8	٤	El						otes 2	
L								¥	۶,	Date:Year.		Time	Matrix	Preservative	Filtered / Unfiltered	Expected Conc.	Method	Vo. of Bottles	Use for Lab Q (MS or DUP)	VOA	ğΙ	es të	PCB Herbicide	Metals / Mercun	Ę.	TOC/TOX	ပ္က	1	丁		'			•
A	0	c	8	A	6	0	4	0	s	7/1				تے				<u></u> -	0,00		<u> </u>	<u> </u>	<u>a I</u>	<u>S</u>	Q.	Ĕ	٥	╁	+	╁	+		. ,	
								1	1	l .	- 1		1		 	 			UUP	\vdash	\dashv	-		1	-		-	1.	4	-	ببيا	OLLI C K	TE	····
KT.	Q		- 1			1 .	D	10	0	7/1	5/16	: 30	-7	<u> </u>										1				1	1					
A	D	c	8	B	6	11	0	0	8	7/1	5 16	: 50	5	1				1				T						十	7	†	 			
				-		Γ								1	 					\vdash	\dashv	+	- -	14	\vdash		-	- 10	4	┦	<u> </u>			
		\dashv			<u> </u>	├	├-	╀	<u> </u>		-	:		ļ				****																
		1	1			1	1			1		: 1		1							T	T	Т		П		7	7	+	1	 			
										1										\vdash	\dashv	\dashv	+	\vdash		\dashv	\dashv	╫	+	-	 			·
					┪			Г		<u> </u>										-			+	-	-	_	_	4	_	╄-	ļ			
\dashv	-	-			-	-	_	⊢	_	<u> </u>	-											\perp												
·	_	_				L				1																T	T	7	T	T				
										1		.									T		1	\Box	1	7	+	十	+	+				· · · · · · · · · · · · · · · · · · ·
4				·				ί.		,										-	╁	十	+-	╂╌┤	+	\dashv	+	+	+	-				
Clie	nts	Spe	Lial Clai	Ins	true	tlor		L						L												\perp				<u> </u>				
		- 1						llon'		or N			- Dual-la							*******										······································	Ter	nperatu	re	°C
#1 F							<u> </u>		-	W.	/ <u>De</u>	7		ms, if an				-							<u> </u>									
Con					إحاز	<u> </u>	5			ya.	4		- 1	7	#2 Relino		y: (Sig)				0)ate:			#3 R	elino	ulsh	ed By	/: (SI	g)	بسسيبين	***************************************	Date	
						 -	_			<u> </u>	•		Time: /	7 7	Company							ime:			Com	pany	/ Nan	ne:		·			Time	:
		ved			3)			-	7	<u> </u>	<u>X</u>		Date:	1 -	#2 Recei		Sig)		<u> </u>		D	ate:	~~~~		#3 R	ecei	ved E	y: (S	ig)				Date:	
Con	ipan	y Na	me:		····	-	******				 		Time: į	760	Company	Name:		Time: Company									Nan	ne:					Time	

COMPUCHEM

CHAIN-OF-CUSTODY RECORD

No.

COMPUCHEM		lame : MC			Client	Addre	ss:						Poi	nt-o	f-Co	ntact :
a division of Liberty Analytical Corp.	BACK	KGROU	<u> </u>	Y GUT	131	MER	(<u>= </u>	VIR				<u>l</u> .	7	Ton	1 CULD
501 Madison Avenue Cary, NC 27513	Carrier:		EX			20 /	Ro	<u> ۲</u> ۾ د	R	K	<u> 20.</u>		Tel	eph	one t	No.: 412/269-2098
1-800-833-5097				187/76/6	s Co	LADI	000	-15	gi)	A	15/	36	Sar	mpli	ng c	complete? (Yor N (see Note 1)
	Sampler	Name: I	· SCHI	LING		ler Signa							Pro	ject	-spe	cific (PS) or Batch (B) QC ?
BOX #1 1. Surface Water 6. Trip Blank	E	BOX #2 A. H	CI + Ice	F. Ice Only		BOX #3	f	F. Filte	red		Box	/ 4	H. F	ligh		Box #5 C. CLP 3/90 T. TCLP
2. Ground Water 7. Oil	Ì		103 + Ice	G. Other			t	J. Unfi	ittered				M. N	vledi	um	S. SW-846
3. Leachate 8. Waste			aOH + Ice	H. NaHSO4		1							L. L	ow		W. CWA 600-series
4. Rinsate 9. Other				I. ZnAc+NaO	H + Ice											O. Other
5, Soll / Sediment / Sludge		E. U	preserved			1					<u></u>					
Sample ID Sample ID Opte: Year 2000	Time	Matrix Box *1 Box Box	filtered	Expected Conc. Method	ottles	Use for Lab QC (MS or DUP)	VOA	SVOC Pesticide	PCB	Metals / Mercury	Cyanide	O&G / TPH		T C		PAGE 1 of 4 Remarks / Comments (see Notes 2 & 3)
AOC10B01007116	08:10	5 6								1				7		·
AOC 10 BO103716	08:35	5 E								-				1		
AOC10B01037116		5 5			1	Dup								1		DUPLICATE
AOC10B01037116	08:35	5 €			1	U. /M	.0			-				7		MS/MSB
AOC10802007116	09:31	5 6			1	7	П			-	\prod			1		/
A 0 C 1 0 B 0 2 0 3 7/16	:-	5 6	_		1						打		\square	니	\top	
AOC10B030071/6		5 6			1		\Box		\Box	し	11				\top	
A ac 1 0 8 0 3 0 2 7116	-	ت ت			1	1	T				廾	1	\Box		7	
AOC10804007116		4- 6		** *********************************		1	П		11		才				\top	
AOC 10 3040 27116		5 6			1		\Box		11	1	才	\top			7	
Clients Special Instructions:	JV			- 			·		-ll-				11			Temperature °C
Lab: Received in Good Condition? Y or N	Describe	Problems, i	any:		~							4				
#1 Relinquished By: (Sig)	4	Date: フ/17/	pp #2 Reli	nquished By: (S	lg)			Da	ate:	····	#3 R	elinqui	shed	Ву:	(Sig)	Date:
Company Name: AKER	1 7	Time: \$170	o Compa	ny Name:				Ti	me:		Com	oany N	lame	:		Time:
#1 Received By: (Sig) /= = D (=)	2	$-\tau$		eived By: (Sig)	~~~~			Da	ate:	•	#3 R	eceive	d By:	(Sig)	Date:
Company Name:	1	Time: 170	Compa	ny Name:	·			Ti	me:		Com	oany N	lame			Time:

СомриСнем
a division of Liberty Analytical Corp.

CHAIN-	OF-CL	JSTODY	RECORD
--------	-------	---------------	---------------

No.

	$^{\prime}$	TATE OF THE PARTY	DI			1						1111	<u> </u>		<u> </u>				<u></u>											
											3 CL			Client	Addres	ss :				<i>,</i>	******		Poi	int-o		ntact :	$\widehat{}$			
ad			•	Analy		согр.	·	BA			D 2.	TUD)	<u> </u>	BA	KER	<u>د</u>	=	<u>ر ر</u>	IR	عرن.	۷,				コ	TM	<u>(ù</u>	LP		
				Aver 2751:				Carrier	: F	<u> </u>	<u> </u>			42	20 K	Oc	23.	م ت		L I).		Tel	eph	one	No. : -	412/2	64-2	098	
				3-5097				Airbill N	lo.: 81	8028	3269	87/7	:/65	CA	AON	OL	15	. /	PA		5/08	3						rN (s		
								Sample	r Name	: D.	SCHIL	LING	·	Samp	ler Signa	iture	3 :						Pro	ect	-spe	cific (P	S) or B	atch (B)	QC?	
BOX #1	1. St	ırface	Wat	er	6.	Trip B	llank		BOX #2	A. HCI	lce -	F. Ice O	nly		BOX #3		F. FI	itered		\Box	Box #4	1		ligh			#5 C.C			T. TCLP
Ì	2. Gr	round	Wate	er	7.	Oll				B. HNO	3 + Ice	G. Othe	r				U. U	nfilter	ed				M. I	Medi	um	1	S. S	SW-846		
	3. Le	acha	te			Waste				C. NaO	-		SO4 + Ice							٠			L. L	.ow	;		W .	CWA 600)-serie:	s
1	4. RI	nsate)		9.	Other	•				04 + Ice	I. ZnAc-	+NaOH+	ice						١							Ο.	Other		
	5. Sc	oil/S	edime	nt / Sli	ıdge				<u> </u>	E. Unpr	eserved				<u></u>				······································								·			~ ~~~
(9 ch		•	e ID max	imun	1)	2040.Voze	Date: Tear.	Time	Matrix Matrix	Preservative og #3	Filtered / Unfiltered xx	Expected Conc. 88	Method Method	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	svoc	Pesticide	Herbicide	Metals / Mercury	Cyanide TOC / TOX	O&G/TPH		P H		PA	Rema	2 o rks / Co e Notes	omm	ents ′
Aoc		01	30	6	2	7/	116	10:33	5	1				ł						V				7						
Aoc	1 1-			1				10:44		E				1						~					1					
AOC	1 1		. 1	1 1	- 1	1		12:16	ı	E.				1											1			**************************************		
AOC				T				12:29		E	-			1						J	7				7					
Aoc	т		7	П	$\neg \Gamma$			11:27	T	ت	7			1										J						
AOC	T = T							11:27	T	E				,	DUP					 				J		7,	021	CAT		
Aoc	\mathbf{T}			Γ	_[_	7		1	T	E				,					1						_	***	79-			·
	\mathbf{I}			1		$\overline{}$		11:31	T	 		 	 			-	┝╾┼				-	┼	-	H	-					
AOC				, ,	2	7/	116	13:29	5	<u> </u>		 		<u> '</u>	ļ	_		4		11		_			\dashv					/
AOC	11	0/	3/1	2	0 1	7/	116	13:30	5	E		<u> </u>			ļ					7				4	\bot					
AOC	11	0/	<u> 31</u>	120	<u>الد</u>	7	16	13:35	5	ت ا		<u> </u>	<u> </u>	1	DUP			\bot				<u>L</u>		4		مل	UPLI	CAT	ج	
Clients Sp	ecial	Instr	uctio	ns:		-			·																		Tempe			°C
Lab: Rece	ived i	n Go	od C	onditio	on?	Y or I	N	Descril	be Proble	ems, if a	ny:				,												. '			
#1 Relinqu	ished	Ву: (Sig)	Ed	<u>Z.</u>	Kli	: (1	Date: 7	1/17/00	#2 Relir	quished	By: (Sig)					Date:		:	#3 Rel	inqui	shed	Ву:	(Sig)		***************************************		Date:	
Company I	lame:			B	9 K	ER.		1	Time:	1700	Compar	ny Name:						Time			Compa	ny N	lame	:					Time:	
#1 Receive	d By:	(Sig)	/	<u> </u>	D	تت	<u> </u>		Date:		#2 Rece	eived By:	(Sig)					Date:			#3 Rec	elve	d By	: (Sig)	·			Date:	
Company I	lame:					٠.			Time:	300	Compar	ny Name:	e: Time: Comp									iny N	lame	:					Time:	

051495

CHAIN	-OF-C	USTO	DY R	ECORD
-------	-------	------	------	--------------

No.

	divis												: MC		السانة			Client	Addre	ss :								Po	oint-c	of-C	onte	act:				
a				_		-		Corp	•	1	DA		LOU		5	UI	<u> </u>		1K=1	_	G	<u> </u>	رود	R	نمن	<u>入</u>		1		Ti	~~	C	رر	P		
	0	ا 01 دع	мао ягу,								rrier		ESI		= x			42	io R	00	15	R	/	<	> \			Te						69-21	946	
			300-							Air	hill N	lo. : 8	18028	1269	87	175	165	(O/	200	ے ص) د	15	1.	1/	7.	/5/	08									lote 1)
 										Sa	mple	r Nam	e:	<u>~1). 5</u>	CH	1-6	NG		er Signa				چ	31	۷			_						atch (B)		
BOX #1		Surf						•	Blank	(BOX #	12 A. HC	l + ice	F.	. Ice O	nly		BOX #3	3	F. F	ilter	ed		В	ox#	4		High					LP 3/90		T. TCL
		Grou			? r			Oil						103 + Ice		. Other	r	-			U. L	Jnfilt	ered					M.	Med	lum			s. s	W-846		
		Lead)				Was						OH + Ice			304 + Ice											L.	Low				W. (CWA 60	XX-seri	es
		Rins						Othe	r					SO4 + lo		ZnAc+	NaOH +	Ice															0.	Other		
L	5.	Soll	/ Sec	dime	nt/	Sluc	ige		·		····	L	E. Un	preserve	<u>d</u>				<u></u>	·																
								Τ		Т		Box#	1 Box	2 Box	#3 E	30x #4	Box #5			T			Т	Т	Т	T	Т	T	ТП		Т					· ~
(9 cł	Sample ID (9 characters maximum) (9 characters maximum) (9 characters maximum) (9 characters maximum) (10 characters maximum)										Time	Matrix	Preservative	Fitered / Unfitered		Expected Conc.	Method	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	svoc	Pesticide	PCB Harbicida	Metals / Mercury	Syanide	TOC / TOX	O&G / TPH		H Q	-			Remai		omn	ents
Aoc	. 1	b	5	0	7	٥	0	7	1/6	12	:49	5	(3					١			37			L	7		Ť		J		\top					
Aoc	1	6	R	0	7		2	ı		1			E		П									٦.	才	T	1	†			十					
	+	╀	+	┿~		_	_			7				+	-				 	-	$\left \cdot \cdot \right $	-		╬	4	 	╀	-	14		_					
A 0 0 A 0 0 A 0 0 A 0 0 A 0 0 A 0 0		0	1		1		1				:14		ا ق	-				Į		-			_ _	4	4	_	_	_			_					
Aloc	4	10	13	0	8	0	1	12	1/6	44	:16	5	E		_			1					_	1	1	\perp		L	4							
AOC	1	0	0	L	b	0	0	12	<u>1/6</u>	Ш	: 59	5	E			-		1						<u> </u>	1				1							
100	1	0	B	Ц	0	0	3	7	116	12	:07	5	<u> </u>)						-	1				7						· · · · · · · · · · · · · · · · · · ·	
100	1	0	B	1	1	0	0	2	116	11	:45	5			/)						T	7	T		T	J	7	7				***************************************	
100	- 1	0	B	1	1	٥	1	7	116	11	:50	3	E)						1,	<i>,</i>	T	T			7	1			-		
AOC	1	0	B	1	3	0	0	7	1/6	12	:47	5	تى ا	-				,					\neg	Ţ	才	T	T	忊		7	十					· · · · · · · · · · · · · · · · · · ·
Aoc	-17	0	1	li	3	0	1	5	1/6	12	. 62	5	E	-				,					十	1	十	\dagger	\dagger	${\dagger}$		7	\dashv	· landara de la propertie de la constante de l				····
Clients S	pecia	al In:	strue	ction	15:	134			<u> </u>	11. 3	· ./.	l						L	J	لسسل		1					ــــــــــــــــــــــــــــــــــــــ		V			Te	mper	atura		°C
Lab: Rec	eive	in (300	d Co	ondi	tion	? '	Y or	N	De	escrib	e Prob	lems, If	any:				······································				****			·····					*****			mper	ature .		
#1 Relinq					2			Z		1_	Z	Date:	1/11/0	#2 Re	linqui	shed B	By: (Sig)					Date):		#3	Rel	inqui	ished	d By:	(Sig))				Date:	
Company	Nam	e:			1	31	16	ا ش	e		ŧ	Time:	1700	Comp	any N	lame:						Tim	e:		_		iny N			·					Time:	**********
#1 Receiv	ed B	y: (S	g)		É,	Ē	D	۲	Ξ×			Date:		#2 Re	celve	d By: (Sig)					Date):		7				r: (Sig)					Date:	
Company Name:									Time:	170	Comp	any N	lame:	***************************************					Tim	e;		7-		ny N				ί,				Time:	~			

CHAIN	I-OF-	CHST	ODV.	RECO	חפר
	(-UF-	LUGI	UUI	RELI	JKU

		•	ノし	Jľ	VI.	ru		Jt.	LE	IVI	Projec	l Name	Me	BCL	£ 5.		Clien	t Addre	e e :							_	n				·	
		a d					-	-		Corp.			ROUM					AKER									Poli	nt-0	ot-C	onti	act:	
			5					veni			Carrie		/- ED			у .					نم	<u> </u>	R.								Tim Cucp	
								513					80283			1.5	4		<u>کم</u>	<u>ں ں</u>	کے	n	2 4 3	<u>K</u>							0.: 412/261- 2048	
				1-	800	-83	3-5)97			Compl	or Norma	0026 3	35041	27/76	/65	100	MAO	PC	<u>) </u>	,,				<u> </u>						mplete?(Y)or N (see No	
BC	X #	1	1 9	Sur	ace	Wal	ar		6	Trip Blan		Teov #	2 A. HCI	<u>) (14)</u>			Samp	ler Signa				7	15								fic (PS) or Batch (B) QC ?	
	,,,,,,	•				Wat			7.	•	IN.	BUX #		+ ice 3 + ice	F. Ice C	•		BOX#		F. Fil				Box	(#4		H. H	-			Box #5 C. CLP 3/90	T. TCLF
					chat		O1			∪⊪ Waste		1		H + Ice	G. Othe					U, U	nfilter	ed					M. M		um	- 1	S. SW-846	
					sate	-				Other				04 + Ice	H. NaH		-	1									L. Lo	W		I	W. CWA 600-series	5
						dim	ant /	Sluc		O(1161					I. ZnAc-	•NaOH +	ICE	İ												- 1	O. Other	
			<u> </u>	JUII	7 06	- CIII TR	31 K 7	Side	ige			J		eserved				<u> </u>						<u> </u>		 ,						
				a	nla	ın				2,000		Box #1	Box #2	1		Box #5	4	oc (iury								PAGE 4 of	
	(9	(9 characters maximum) \$\frac{1}{2} \frac{1}{2}									Time	Matrix	Preservative	Filtered / Unfiltered	Expected Conc.	Method	No. of Bottles	1 🕯 👇	VOA	svoc	Pesticide PCB	Herbicide	Wetals / Merc	Cyanide	roc/Tox	3&G / TPH		2	.		Remarks / Comme (see Notes 2 & 3	
10	0	_	1	4	1	1	4		0	7/10	. 3:07	5	Ë								7	1	1	Ĭ	ᅱ	~	\dashv	\forall	7	\dashv		
Γ	Т	Γ			1	1	1											 	╂╌┨	\dashv		+-	H	┝╌┤		-		-1	-	_		
P	0	C	1	0	14	4	1	O	3	2/10	13:16	3	É					ļ		\perp			1],	1	_			
	ŀ					1				1	1:									1			İ				Т			\Box		**********
Г	Γ	Г		Γ	T	T	T	1		1		1						1	\vdash	\dashv	\dashv	┿	+	┝╌┤		\dashv	\dashv	\dashv	-	\dashv		
-	L	 		<u> </u>	╀-	╀	╀-	<u> </u>	<u> </u>	1.	<u>.:</u>	<u> </u>	ļ					<u> </u>			\perp						-	[.	- 1		
1							ı			1	1 :	l				Ì.		İ									T	T				
		Г		T		1	17						 			-		 	\vdash	-		╫	-	\vdash	-		-+	┥	-	-		
\vdash	╀╌	 		_	╀	╀	╀	⊢	<u> </u>		 	 						<u> </u>	Ш													
								1	1	1	1:							İ										T				************
	Π			Γ	Τ	T	1											 	\vdash	十	+	╫			-	-	+	+	┥	\dashv		·
\vdash		_		-	╀	╀	┡	⊬	H	<u> </u>	 - i -	<u> </u>	 					ļ	Ш	\perp		_								\bot		الرميدات الم
L					Ĺ					1] :														ł	١	1					
										1											1	1	\Box		7	7	\top	+	\top	7		
CII	ants	Sne	l	l In	etro	ctio	ne.	·	l			<u>. </u>	<u> </u>	<u></u>	L	<u> </u>	L	J	 _				لسل	لبا			L			<u></u>		
								tion	2 V	or N	Descri	ne Proble	ms, If an	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			····					:									Temperature	_°C
		nqui					£	7	. /		J		115/00	Υ	mulehad F	Bur (Sia)	···			·······	\		<u>_</u>	" "								2 hallowers
T .		ny N				<u> </u>	Ż	1	V.	ER.	-		1	Compan		7. (Sig))ate:			#3 R				sy: (Sig)		Date:	
		eived			la)		المير			ÉX			/17/00			Sia)			···		ime: Date:	:		Com				<u> </u>		_	Time:	
_		ny N			3/_					<u>~_/`</u>		Time:	7	Compan		<u> </u>			<u>-</u> -		ime:			#3 R				sig)			Date:	
H			<u> </u>											p-wiii						<u>'</u>	mie.	ne: Company Name:									Time:	

COMPLICHEM

CHAIN-OF-CUSTODY RECORD

No.

CONTROCTIENT	Project Name: M			Address :	·		Point-of-Conf	
a division of Liberty Analytical Corp.	BACKGRO	STUE GULL	DY BA	KER C	ENVIRO	۸.	^	JIM CULP
501 Madison Avenue Cary, NC 27513	Carrier: F-	D EX	42	o Rou	SER KON	A.D.	Telephone No	0.: 412/269-2098
1-800-833-5097	Airbill No. : 8/802	83269 87/76/	65 Con	RADPOL	13 PA	15108	Sampling co	mplete?(Y) or N (see Note 1)
	Sampler Name :	VARIOUS		er Signature :			Project-speci	fic (PS) or Batch (B) QC ?
BOX #1 1. Surface Water 6. Trip Blank	BOX #2 A, H	ICI + Ice F. Ice Onl	ly	BOX #3 F.	. Filtered		H. High	Box #5 C. CLP 3/90 T. TCLP
2. Ground Water 7. Oil	B. H	HNO3 + ice G. Other_		U	. Unfiltered	1	M. Medlum	S. SW-846
3. Leachate 8. Waste	C. 1	NaOH + Ice H. NaHS0	04 + ice			ι	L. Low	W. CWA 600-series
4. Rinsate 9. Other	D. H	12804 + Ice 1. ZnAc+N	laOH + ice					O. Other
5. Soil / Sediment / Sludge	E. U	Jnpreserved	·····			<u> </u>		
	Box #1 Bo	x #2 Box #3 Box #4	Box #6					1.13
Sample ID (9 characters maximum)	Time	Filtered / Unfiltered Expected Conc.	Method	Use for Lab QC (MS or DUP) VOA	Pesticide PCB Herbicide Metals / Mercury	Cyanide TOC / TOX O&G / TPH	T a_	PAGE of _3 Remarks / Comments (see Notes 2 & 3)
AOC6261300714								
AUC6BG1302714	1 1 -1							
AOC6BG11007114	1 1 1	<u> </u>	ļ				7	
	14:44 5 6	E -	1				7	
AOC7BG12007/14	1 1 _1	E					V	ŕ
AUC7861208714		£					74	
AOC7BG07007114	13:43 5	£ -	1					
A0 C7 B G 0 7 0 8 7/14		É	1				V	
AOC7B606007114		€ -	1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	1 1	= -	1		L			
Clients Special Instructions:								Temperature °C
Lab: Received in Good Condition? Y or N	, Describe Problems,	If any:				:	. —	
#1 Relinquished By: (Sig)	Date: 7/17	/09 #2 Relinquished By	y: (Sig)		Date:	#3 Relinquisi	hed By; (Sig)	Date:
Company Name: BAKER	U Time: 170		***************************************		Time:	Company Na	ımė:	Time:
#1 Received By: (Sig) /==> EX	()	#2 Received By: (S	Sig)		Date:	#3 Received	By: (Slg)	Date:
Company Name:	Time: 12	Company Name:	•	`	Time:	Company Na	ame:	Time:

COMPUCHEM
a division of Liberty Analytical Corp.

CHAIN-OF-CUSTODY RECORD

No.

	OMPUC				Project	Name :	MCK	3 CL	E 7		Client	Addres							F	oint	of-C	ontact				
ad	livision of Liberty An			orp.	BA	CICG	ROU	UD	STUI	>4	BA	KER	· 	EA	VVI	Ri	(بار ز				1	1	(v_	p		
	501 Madison Av Cary, NC 27		•		Carrier		<u>ر ق</u>					O Ko							T	elep	hone	No.:	412/2	69-2	940	?
	1-800-833-50				Airbill N	10.:8/	80263			65	Cox	MOP	UL	15	נן	A	151	108	8	Samp	oling	compl	ete? (Y)	orN (see N	ote 1)
						r Name		ARI				er Signa				つん							PS) or B			
BOX #1	1. Surface Water			ip Blank		BOX #2	. A. HCI +		F. Ice O	•		BOX #3		F. Filte			E	Box #4		l. Hig		Box	(#5 C.)	T. TCLP
	2. Ground Water		7. 01				B. HNO		G. Other		····		į	J. Uni	filtere	d					dium			SW-846		
1	3. Leachate			aste			C. NaOl		H. NaHS								- 1		L	Low	'			CWA 60	0-serie	28
	4. Rinsate 5. Soil / Sediment /			ther			E. Unpre	04 + Ice	I. Znac+	NaOH +	ICE												O,	Other		
	J. Soll / Sediment /	Sidag				I			7 2 22							·····										
(9 ch	Sample ID aracters maxim	um)		Date:Year. 2 000	Time	Matrix Watrix	Preservative x	Filtered / Unfiltered os #X	Expected Conc. xog	Wethod xog	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	SVOC	PCB	Herbicide	Metals / Mercury	Cyanide TOC / TOX	0&G / TPH	7		<i>F</i>	Rema	2 arks / C	omm	
AOC	78914	. o	٥	7/14	16:06	5	Œ				1									l	1					
ADC	78614		0	7/14	16:37	5	ت د	 .												,	11					
	73608					l .	شتا				1									-	1					
	73608	-1 1			I	1	Ē	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1		П				7			Τ,	丌					
	73611					1	E				1			1	1		J		1	+,	7			······································		
1 1 1		1 1	1		14:50	1	E				 	 	\Box	十	\top	П		+++	\dashv	┪.	T	_				
						-	E				 '. 	 	$\vdash \vdash$	十	┿	\vdash	+	- -	+	+		_			·	
					17:00			-	 			 	\vdash		+-	\vdash	4	- -	+	+	+					
	73613		- 1		l	۰۰۰ ا	Œ				 '-	DIP	\vdash	- -	- -	Н	4		_	- -	11	1)UPL	CAT	<u></u>	·
AOC	78913	19	0	7114	12:00	5	<u> </u>		ļ	<u> </u>		H5/H5			_		4		_	<u> </u> -	11	M	5/M	5 >		
Aoc	70913	10	6	7/14	17:15	5	Œ		<u> </u>			<u> </u>					1				4		· ·			
Clients S	pecial instructions:																						Temp	erature		_°C
Lab: Rece	eived in Good Cond	dition?	? Y	or N	Descri	be Probl	ems, If ar	ny:																		
#1 Relinqu	uished By: (Sig) عربي	<u> </u>	_{\begin{aligned} \(\begin{aligned} \)	lein	4	Date:	1/17/00	#2 Relin	quished i	By: (Sig)			· :	D	ate:			#3 Relin	quist	ned B	y: (Sig	<u>) </u>			Date:	
Company Name: BAKER Time: 1700 Company Name: Time: Company Name: Time:													<u> </u>													
#1 Receive	ed By: (Sig) /	<u> </u>	Ź	<u> Ē</u>	<u>X</u>	Date:	7/17/00	Т —		(Slg)				D	ate:			#3 Rece			SIg)				Date:	
Company Name: Time: 1700 Company Name: Time: Company Name: Time:											<u>:</u>															

	CM 5	roject	Name :	MC	BCL	.e.T		Client	Addres							Т	Dain	4 - 4	^		
a division of Liberty Analytical	^	- 3				STU:	~ ~									\dashv	Poir		Cont	· /*.	7
501 Madison Avenue	-	arrier :			EX		<u>u / </u>	100	kër. 20 K		22	LK.					Tala		<u> </u>		<u> </u>
Cary, NC 27513						37/76/	1		LAUP					<u>2 D</u>						0.: 412/269-20	
1-800-833-5097			r Name		IAK 1		65	_	er Signa			/	7A	/=	5/0					mplete? (Y) or N (see	
BOX #1 1. Surface Water 6.	Trip Blank			A. HCI +		F. Ice O	ntv	Samp	BOX #3		F. Filte	ored		le	30x #4		Proj H. H	~~~	peci	fic (PS) or Batch (B) QC Box #5 C, CLP 3/90	T. TCLP
	Oll			B. HNO		G. Othe	•		DOX III		U. Un:		d	٦	3UA 774			gu edlun	n	S, SW-846	i. ICLP
3. Leachate 8.	Waste	l		C. NaO		H. NaHS)	l				-	-			L. Lo			W. CWA 600-se	ries
4. Rinsate 9.	Other]		D. H2S0	04 + ice	I. ZnAc4	NaOH +	Ice										••		O. Other	,,,,,
5. Soil / Sediment / Sludge				E. Unpre	eserved																
	T		Box#1	Box #2	Box #3	Box #4	Box #6		T	П					7	ТТ			_		
Sample ID (9 characters maximum)	Date:Year 2000	Time	Matrix	Preservative	Filtered / Unfiltered	Expected Conc.	Method	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	SVOC	PCB	Herbicide	Metals / Mercury	cyanide TOC / TOX	O&G/TPH	- 1	H O		PAGE 3 of Remarks / Com (see Notes 2	ments
A 0 C 7 B G 1 5 0 0	7114 1	7:37	5	2	******			I										4			
AUC7861504	7/14/1	7:47	5	É				1									Т	Ţ	Τ		
				***************************************		-					十	+-		+	十	\vdash	_	4	+-		
AUC7060900	17/IS/	<u>5:45</u>	5	ت		ļ			ļ	\sqcup		_		4		Ш		4	_		
A 007BG0900	7/15/19	5:45	5	E				- 1	DUP					4		H	١			DURICATE	
A0 C7 B G 0 9 0 1		- 1	سس	6				1				T		コ				J		317	.•
A0C7BG1000	1 1	1		J.				1			\top	+		7	+	Н			╁		
											\dashv	十	\vdash		┪	╁┈╁	十	+	╁╌		
	7/15/1			یج به					ļ	\vdash	_	-		4	- -	 	4	4	1-		
A006661200	7/170	8:05	5	ت					·					4				니			أحييا
AOC6161203	37/170	<u> ४: २८</u>	5	يَّت				1						4							
Alexander	AKU	u	15	us	1	uc	Co	4	re	1	1		-	24	= 7	12	1				
Clients Special Instructions:				-																Temperature	°C
Lab: Received in Good Condition?	Y or N C	Describ	e Proble	ms, if an	ıy: -							,									
#1 Relinquished By: (Sig)	Blein	1	Date: 7/	17/00	#2 Relin	quished (By: (Sig)				D	ate:		#	3 Reli	nguis	hed I	3y: (S	ig)	Dat	e:
Company Name: 15A	KER	T:	Time: (700	Compan	y Name:					TI	me:		$\neg \Gamma$	ompa					Tim	<u> </u>
#1 Received By: (Sig)			Date: 7	117/00	#2 Rece	ived By: ((Sig)				D:	ate:			3 Rec			(Sig)		Dat	
Company Name:			Time:	1700	Compan	y Name:					Ti	me:			Compa					Tim	ie:
•												_			,						

No.

COMPUCHEM	Project Name: MC&	CLEJ.	Client Address :		Point-of-Contact :							
a division of Liberty Analytical Corp.	BACKGROUNT	STUBY	BAKER ENV	uron.	JIM CUL							
501 Madison Avenue	Carrier: ドピン	Ex	420 Rousen	(S)	Telephone No.: 41	2/269-2098						
Cary, NC 27513 1-800-833-5097	Airbill No.: 818028	326987/76/65	CORPOPOLIS, P	A 15108		? (Y)or N (see Note 1)						
	Sampler Name: 立	. SCHILLING	Sampler Signature :	EAK	Project-specific (PS)	or Batch (B) QC ?						
BOX #1 1. Surface Water 6. Trip Blank		•	BOX #3 F. Filter	ed Box #4	H. High Box #5	C. CLP 3/90 T. TCLP						
2. Ground Water 7. Oil	B. HNO	-	U, Unfil	tered	M. Medium	S. SW-846						
3. Leachate 8. Waste	C. NaOl		1	1	L. Low	W. CWA 600-series						
4. Rinsate 9. Other		04 + Ice I. ZnAc+NaOH +	· Ice			O. Other						
5. Soli / Sediment / Sludge	E. Unpre	eservea										
Sample ID (9 characters maximum)	Time Matrix Astronomy Preservative SS #1 Box #3	Filtered / Unfiltered Box #3 Box #4 Box #5 Box #4 Box #5 Box #4 Box #5 B	thes (Fe)	PCB Herbicide Metals / Mercury Cyanide TOC / TOX		emarks / Comments (see Notes 2 & 3)						
AOC 9BG 12007114	11:25 5 E	- '		V								
	11:47 5 E				V							
AOC9BG11007115	1 1		1									
AOC9BG11057115												
4000460000746												
A O C 9 B G O 9 O 7 7/15 A O C 9 B G O 9 O 7 7/15	09:33 5 6					######################################						
700 9 3 4 0 9 0 1 113	04:33 3 6		 ', 	 	 							
AOC93601007/15	13:18 3 6		1-									
A0093601057115					11411							
AOC93604007115												
AOC9BG04117115	H:35 5 E											
Clients Special Instructions:				****	Te	emperature°C						
Lab: Received in Good Condition?, Y or Na	Describe Problems, if a	ny:		<u>.</u>								
#1 Relinquished By: (Sig)	Date: 7/17/00	#2 Relinquished By: (Sig)	Da	ite: #3 Reling	uished By: (Sig)	Date:						
Company Name: BAKER.	V Time: 1700	Company Name:	Tir	ne: Company	Name:	Time:						
#1 Received By: (Sig) FED EX												
Company Name:	Time: /260	Company Name:	Tir	me: Company	Name:	Time:						

No.

										Proj	ect	Name :	MCC	ا دسد	= T		Client	Addres	SS :		*******					Poi			tact :			
	ac	divisio 			•	•		Cor	p.	131	4 C	K Cole	بيرت	D	<u>St 12</u>	<u> </u>		KER	·		<u>ئە</u>	VIV	20	<u> </u>		<u> </u>		11	an	<u> (</u>	<u>-P</u>	
		50			on A					Car			É.D	<u>ڪx</u>			42	.٥ /	(or	٠,	E K		R	<u>}-</u>					0.: 41			
					33-5									32691	87/76	165-	(01	2000	20	15		DA		5/0	8	Sar	nplin	g co	mplete	Yor N	l (see	Note 1)
									لسيم		ple	r Name			HILL	ہد ہ	Sampl	ier Signa				EJ						spec	ific (PS)			
BOX	#1		urfac						Blank			BOX #2	A. HCI		F. Ice O	•		BOX #3			tered			Box #	•	H. H	-		Box #5			T. TCLP
			roun		ater			Oll					B. HNO		G. Othe					U. Ui	nfilter	ed					/lediur	n		S. SW		
			each					Wa					C. NaO			SO4 + lce							١	•		L. L	WC				VA 600-se	eries
			linsat		ment	/ Chi		Oth	ier		-		E. Unpr	04 + Ice	I. ZnAct	FNaOn +	ice													O. Oth	ier	
<u> </u>		J. 0	0117	Jeun	HOIK	7 314	uye									T = "-		<u> </u>								·····			<u></u>			
(9 ch	Sa narac	amp			num)		Date:Year. 2000	Time		Matrix xoa	Preservative ox x x x x x x x x x x x x x x x x x x	Filtered / Unfiltered xx	Expected Conc. og	Method	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	svoc	Pesticide PCR	Herbicide	Metals / Mercury	Cyanide TOC / TOX	O&G/TPH		H C			emark		4 4 ments & 3)
A		9	3	ا ء	06	, c	> c	> -	7115	14:	54	5	E				1						1				1					
A	_							\top	115				E				1						J	/			7				b	
A								1	7115	i		l _	Ë				1		\Box			1		\top	1		ナ	╁	1			
				7			\neg	\top					1 1		1		1	1			\dashv	+			+		 	十	 			
A			1 1		4	카.	245	4	7115	08:	<u>53</u>	ا ک	1 5	-		-	1	 	H		- -				┼	-	_	+	 			
A	0 c	19	4	6	08	3 0	2 0	4	7/15	10:	17	5	E				'						4		_		4				متستند المستواج	
A	OC	9	6	9	0	80	6	. -	7115	10:	36	5	É	<u> </u>			(7				1					
									7115				2				1										1	Τ				
1 1			1 1					- 1	7115	1		1	É				1		П						1		オ	1				
1 1						- 1			71 <i>1</i> 5			1 .	10		1	1	1 ,	 	T	\dashv	\top	+	7		+		1	\dagger	†			,
			$\Gamma \neg \Gamma$			1		-1		L		1		 		 	 	-		\dashv	_	╅			\dagger	Н	*	+				, , , , , , , , , , , , , , , , , , ,
							<u> </u>	1	7/55	1/5:	55		=	1	<u></u>	<u> </u>	1	_1	لــــا			<u> </u>	10	LL		لـــــا			<u> </u>	mpera		°C
Clier									<u>.</u>				, , , , , , , , , , , , , , , , , , , 	enceptantes topoques	•		OLM COLOUR DUP	**************************************				***************************************							16	mpera	ture	
Lab:	Rec	eived	in G	ood	Con	ditio	n?	- 72	777	De	scrip		ems, if a	1		·····			<u>:</u>	<u> </u>												
#1 R	elinqı	uishe	d By:	(Sig)	9	4	X.	lein	<u>In</u>	*	Date:	10/01/0	#2 Relin	nquished	By: (Sig)					Date:			#3 Re	linqui	ished	Ву: (Sig)			Da	te:
Com	pany	Name	9:						EK.			Time:	1700	Compa	ny Name:						Time			Comp	any N	Vame	: ~				Tir	ne:
#1 R	eceiv	ed By	r: (Siç)	يم	ي :	<u> </u>	: (<u>三×</u>			Date:	<u>י/כו/ר</u>	#2 Rec	elved By:	(Sig)					Date:			#3 Re	ceive	d By	(Sig)				Da	te:
Com	pany	Nam	e:								• ;	Time:	1760	Compa	ny Name:						Time			Comp	any f	Vame	:				Tir	ne:

CHAIN-	-OF-CU	STODY	RECORD
--------	--------	-------	---------------

No.

			IAI										MCB				Client	Addres	s :							JP	oint			tact :	_			
	a di		on of				•		orp.		1340	KGR	تبانات	<u>s</u> 5	TUD'	У	BAI	KER	(<u> </u>	<u>ر د</u>	12	OA),		\perp						<u> </u>		
		50	11 M					9			Carrier	: F	هت	EX			47	20 /	o)SE	12	,	<u> </u>	<u>D.</u>		_]T	elep	ohor	ie N	0. : 4	12/2	69-	209	8
			Car 1-8								Airbill I	10.: B/	8028	32.698	37/76	165	Co	KAO	00	w	5	PI	9	15/	08	s	am	pling	g co	mplete	9(Y)	or N	(see l	Note 1)
											Sample	er Name	: D	, ScH	ine	wc	Sampl	er Signa	ture	:		ئى	. T	10		Р	roje	ect-s	peci	fic (PS) or E	atch (l	B) QC	
BOX #1		1. 8	urfa	e V	/ater			6. T	rip E	Blank		BOX #2	A. HCI+	· Ice	F. Ice O	nly		BOX #3		F. Fil	terec	1		Box	#4	Н	. Hig	gh		Box#	5 C.	CLP 3/9	90	T. TCLI
		2. 0	rour	d W	/ater		•	7. 0	H				B. HNO	3 + ice	G. Other	r				U. U	nfilte	red				М	i. Me	ediun	U		S.	SW-84	6	
		3. L	each	ate					Vast			İ	C. NaO			304 + Ice								ļ		L.	Lov	N				CWA		ies
			Rinsa						the						I. ZnAc+	NaOH +	Ice	1													0	Other_		
L		5, 5	ioil /	Sedi	men	t / S	ludg	je				<u> </u>	E. Unpr	eserved				<u> </u>												<u> </u>				
(9	cha		amp cter:			nu	m)		1	Date: Year. <u>∠000</u>		Box#1	Preservative o x	B Filtered / Unfiltered x #\$	Expected Conc. og		No. of Bottles	for Lab QC or DUP)			ide	cide	s / Mercury	Cyanide	TOC/TOX	E41 /	- 1	17 0			Rema		Com	4 ments & 3)
	Date:Y											Matrix	Jess	ie e	<u>&</u>	Method	9.0	Use f	δ Š	Š	Pesticide	PCB Herbicide	Metal	S S	2 2	2		T						
Aυ	009861000711										09:49	1	(4	-			!			32			~				1	7	1					
					1						10:0	T	رب	****			1						L				7-	7	T					
AB	c	9	A	٦	_	,	0	أ	7	110	10:6	(۳	-			1	DUP					Ju	1		1	-	1	1	D.,	01.10	AT	. ••	
1	1009661007745											1,-		****	†		,				十		1		十	十	\top	ナ	+		<u> </u>		<u> </u>	
	10c9BG140071151												<u>E</u>		 		 	 	-		-		1		_	_	ֈ՝	4	+	 				
AD	40c9BG14007115											5	<u> </u>	_				DUP					<u></u>	凵	_			1	\perp	Do	PLI	cA:	ي ح	
Ao	C	9	B	G	1	4	0	ø	7	1.15	16:2	5	É				1	45/45	2				<u> -</u>				ŀ	1	$oldsymbol{\perp}$	MS	145	<u>D</u>		
AO									1 .		16 :Ze		=	-		1	1						سا			İ		1		. '				
	1	1				3	D	0	7	110	09:00	5					1						1	$\left\{ \ ight]$			Τ,	T	T					
A0096603007/1609:0										. 64	• 1		E				1						-	1				1	T					
AOC 9AGO 3087117:										1 1	:	(Œ				1	JUD	,		T			\prod	T	T	1	7		70	IPL	ICA	7 6	
Clients										:																						eratur		°င
Lab: R	ece	ivec	i in C	3000	i Co	ndi	lion	? \	Y or	N	Descr	be Probl	lems, if a	ny:																				
#1 Rell						5	1	K	U	lin	lod	Date:	2/12/00	#2 Reli	nquished	By: (Sig)				:	Date	;		#3 F	Relino	quish	ed I	By: (\$	Sig)				Dat	e:
Compa	iny t	Vam	e:			0	1	SA	Ki	·K.		Time:	17/0	Compa	ny Name:						Time): -		Con	npany	/ Nai	me:						Tim	e:
#1 Rec				g)	_/		=			ΞX		Date:	1/1/0	#2 Rec	elved By:	(Slg)					Date	:		#3 [Recei	ved	Ву: ((Sig)					Dat	e:
												Time:	1160	Compa	ny Name:						Time	<u>:</u>		Con	npan	y Nai	me:					····	Tim	e:

No.

	#	' <i>~</i>	\ \	DT	T	TI		7 /		_			-															
a division of Liberty Analytical Corp. Project Name: MC& CLEJ Client Address: BACKGROUND TUDY BAKER GA																<u>ا</u> ل	Point			ntact:								
	a			,		•		Corp.	BAI	TKG	ROU	UD_	Jun	<u> </u>	130	KER	2		<u>.</u>	VII	20	N					J	TM CULP
		50)1 Ma				е		Carrier		G.D				420) K	ט נ	Sé.	K	./	(00	AB		7	l'eler	hor	ne N	No.: +12/269- 2098
			Cary 1-800						Airbill N	lo. : સ્ટે _ન	8028	3269	187/	6/65								70	8	٦	Sam	pling	g c	omplete? (vor N (see Note 1)
			1-000	<i>-</i> 00.	J-JU	101				r Name		115 RK		1		er Signa			NW	E 2			· · · · · · · · · · · · · · · · · · ·					cific (PS) or Batch (B) QC ?
ВОХ	#1	1. 5	Surface	Wat	ter		6. 7	rip Blank			A. HCI		F. Ice O	nly	A.,	BOX #3		F. Filt				Box	#4	****	1. Hiç		1	Box #5 C. CLP 3/90 T. TCLP
		2. 0	3round	Wat	er		7. 0	•		ł	B. HNO		G. Othe					U. Un	filter	ed				٨	Л. Me	diun	n	S. SW-846
		3. L	.eacha	le			8. \	Vaste			C. NaO	H + Ice	H. NaH	304 + lce	•									t	Lov	٧		W. CWA 600-series
İ		4. F	Rinsate	ı			9. (Other			D. H2S	04 + Ice	I. ZnAc+	NaOH +	lce													O. Other
		5. 8	Soll / S	edim	ent/	Slud	ge				E. Unpr	eserved				1						<u> </u>			.,,			
								T		Box #1	Box #2	Box #3	Box #4	Box #5	T	T	П		T	T	Т	П	Т	Т	Т	T	Т	
1								0		1		8						1	1	Ì				1	l			PAGE 4 of 4
		_						2 000			1	He H	Ę		l "	8			1		β			- 1				
												Ì,			₹ Ž		ŏ	ᇎ	İ	-	Ĭ.	Remarks / Comments						
İ	(9 CI	nara	cters	max	KIMI	um)		>												1/:	١:		1	네_	(see Notes 2 & 3)			
	Matrix Matrix												Ř	l ŧ	ģ	AS Se	Q			声	Jets	٦	ĕ	8				
Δ		Ja	1	10	Ι,			 	09:49		E	-		 	1			1		T	1	Ĭ		1		1	1	
				1	1	1	1		1	1	سين ا		 		<u> </u>		Н	十	+	+	۲	H	\exists	十	\dashv	+		
	<u>0 </u> 0	ध्य	0	3 0	12	12	13	1/17	09:58	5	1-	 	 	ļ	 	 	\vdash	-	-	+	\vdash	\vdash	\dashv	-	-	+	4	
11			11	1		1		1	1:												1						1	
	1	1			1	T		,		1									Т				П	\neg	1	\top	T	
-	-		╀		+	┼	╄	 	<u> </u>	 		ļ	 -		<u> </u>	 	╂╾┥	-	-		╂	\vdash	\vdash	\dashv	+		-	
1	-	ļ					l	1	1:		l	<u> </u>				<u></u>								- 1				
	丁		П	7	1	Т	Π	,					1				П			Т	T					\top	Τ	
Н	+		╀╌┼╴		+-	┼	╀	 	 		 	 	 	 	 	 	┼┤		╬	- -	╁	\vdash	-	-	\dashv	+-	+	
								1	<u> </u>						<u> </u>													
	•		\prod	Т	Τ			,																П				
\vdash	\dashv	-	┼╌┼╴	╌	+	╫	╁╴	 	 	 	 	 	 		 	 	H	+	+	╁	╁	+	\vdash	\dashv	╅	╬	十	
																	Ш		_ _		L			_		\perp		
							İ	/	:											Ĺ								
Clients Special Instructions:																							·			Temperature°C		
Lab: Received in Good Condition? Y or N Describe Proble											ems, If a	ny:	:											:				
#1 Relinquished By: (Sig)										Date:	0/17/60	#2 Reli	nquished	By: (Sig)					Date:		******	#3	Relir	quis	hed E	3y: (S	Sig)	Date:
Company Name: BAKER								V. P		· Time:	1700	Compa	ny Name:					1	Γime:			Coi	mpar	y Na	me:			Time:
			y: (Sig)		1=	۳		Ex	,		: []	T	eived By:						Date:			#3	Rece	ived	Ву: ((Sig)		Date:
		y Nam								Time:	77		ny Name:		,			1	lme:			Col	mpar	ny Na	me:			Time:

No.

	Name: MCB CLET	Client Address :	Point-of-Contact :	
a division of Liberty Analytical Corp.	CKGROUND STUDY	BAKER ENVIRON.	JIM (ULP	
501 Madison Avenue Carrier Cary, NC 27513		420 ROUSER RD	· Telephone No. : 414/269-2098	
1-800-833-5097 AIFDIII I	No.: 818028326987/76/65		Sampling completed Yor N (see Note 1	1)
	er Name: N. BARTA	Sampler Signature : CTK	Project-specific (PS) or Batch (B) QC?	
BOX #1 1. Surface Water 6. Trip Blank	BOX #2 A. HCI + ice F. ice Only		Box #4 H. High Box #5 C. CLP 3/90 T. To	CLP
2. Ground Water 7. Oil	B. HNO3 + ice G. Other C. NaOH + ice H. NaHSO4 + ice	U. Unfiltered	M. Medium S. SW-846	
3. Leachate 8. Waste 4. Rinsate 9. Other	C. NaOH + Ice H. NaHSO4 + Ice D. H2SO4 + Ice I. ZnAc+NaOH +	l l	L. Low W. CWA 600-series O. Other	
5. Soil / Sediment / Sludge	E. Unpreserved		O. Other	
	Box #1 Box #2 Box #3 Box #4 Box #5			
Sample ID (9 characters maximum)	Matrix Preservative Filtered / Unfiltered you was been	No. of Bottles Use for Lab QC (MS or DUP) VOA SVOC Pesticide PCB Herbicide Metals / Mercury	PAGE 1 of 1 Remarks / Comments (see Notes 2 & 3)	1
AOC1180100711612:46	5 6 -			
AOC1180101711612:49	56			
AOC 1 1 BO2 00 7/16 12:25				
AOCIIBO201711612:31				
AOC 1 1 B 0 3 0 0 7/16 12:04				
AOC11BO30171612:10				
المستقل المستقل المستقل المستقل المستقل المستقل المستقل المستقل المستقل المستقل المستقل المستقل المستقل المستقل				
AOC 1 1 B 0 4 0 0 7/16 /1:19			+++4+	-
AOC 111004027/16/1:19			++++11++	****
AOC1 180402 711611:18	5 6 -	1 DUP	DUPLICATE	
AOC 11 BOS 00 7/16/0:20	05E -	1 1 1 1		
Clients Special Instructions:			Temperature	<u>°C</u>
Lab: Received in Good Condition? Y or N Descr	be Problems, if any:			
#1 Relinquished By: (Sig)	Date: 7/1 7/06 #2 Relinquished By: (Sig)	Date:	#3 Relinquished By: (Sig) Date: .	
Company Name: // AKEK	Time: 1200 Company Name:	Time: (Company Name: Time:	
#1 Received By: (Sig) /= ED EX	Date: 7/7/60 #2 Received By: (Sig)	Date:	#3 Received By: (Sig) Date:	
Company Name:	Time: 1700 Company Name:	Company Name: Time:		

	COMPUCHEM Project Name: Mc A C LET Client Address:																N	lo.	051490					
	-				Project	Name :	MCB			***************************************										F	oint	-of-C	onta	act:
a division of L	iberty	Analy	tical (Corp.	RAC	KGAS	هدمارا	- 5	TUD	Y	BA	(i R		EA	/ا د	IR	U A	5.		٦		-	ス	M CULP
501 Ma					Carrier		آ ہے شم		×	·		Ro					N)			7	elep	hone	No.	
	, NC 2 0-833-				Airbill N	o. : 818				<u></u>		AOP				14	1	/5	70	<i>y</i> e	amı	oling	con	mplete?(Y or N (see Note 1)
1-000	0-033-	.5091			Sample			-	RTM			er Signa			7	Œ:	TK			_				ic (PS) or Batch (B) QC ?
BOX #1 1. Surface	e Wate	r	6.	Trip Blank		BOX #2			F. Ice O			BOX #3		F. Fil	ered			Box	#4		I. Hig			Box #5 C. CLP 3/90 T. TCLP
2. Ground			7. (•			B, HNO		G. Other	, 				U. Ur	ıfilter	ed				N	1. Me	dlum	1	S. SW-846
3. Leacha	te		8. \	Waste			C. NaOł	+ Ice	H. NaHS	604 + lce)									L	. Lov	v		W. CWA 600-series
4. Rinsate	•		9. (Other			D. H2SC	04 + Ice	I. ZnAc+	NaOH +	ice													O. Other
5, Soil / S	edimer	nt / Sit	udge				E. Unpre	eserved																
				Υ		Box #1	Box #2	Box #3	Box #4	Box #5	i i	Γ		T		<u> </u>	Т			_	_	T		5 4
				00															١					PAGE 2 of 4.
				300				<u>i</u>	ပ္			ည				1	5				1			
Sampi							ive	ig 5	. 8		l≝	# £				1) je		×۱	Ξĺ		Z		Remarks / Comments
(9 characters	mäxi	mun	n)	Date:Year.			ry al	Ŕ	<u>\$</u>	R	of Bottles	125			흻	g	1/8	용	ĔĬ	El	1			(see Notes 2 & 3)
	ine ine	Matrix	Preservative	Filtered / Unfiltered	Expected Conc.	Method	9	Use for Lab QC (MS or DUP)	Λον	svoc		Herbicide	Metals / Mercury	Ža.	8	O&G / TPH				1				
	٨١٨		Π.	 -=				<u>u</u>	<u> </u>	≥	Z	25	2	S	+	+	≥	0	뉘	4	+	}	H	
	30		7		10:24		ピ		 			 	-	-	+		H,	-		\dashv	+	1	H	
400111	30	6	0 (7/16	09:55	5	٤				!	<u> </u>			_ _	-	1			_	1	4_		480000000000000000000000000000000000000
40c11/	30	6	01	7/16	09:58	5	E	-			1						1				l	1		
		l 1		1	11:40		6	-			1						1							
AOCIII					11:44		Œ				1						1				1.			
				1	10:26		烂				T				1	1	1				-	1		
	10	a	2	7//	10:40	7	6		 	 			\vdash	\Box	+	1	1			+	1	ナ		
		F			i			 	 	 	 :		-	\vdash	╌	╁	+-	_	-	\dashv	+	-	Н	
AOCIII	<u>30</u>	9	OC	7/19	08:40	5	E		ļ			ļ	_		4		Ľ			_	<u> </u>	4_		
AOCIII	00	9	01	7116	08:46	5	سے	<u> </u>			1						1				<u> </u>	4_		
	BO	9	01	7/10	08:46	5	Œ	-				MYM	SI				1	1_				1		MS/MSD
Clients Special Inst	ruction	ıs:										1												Temperature <u>°</u> C
Lab: Received in Go	ood Co	onditi	on?	Y or N	Descri	be Proble	ms, if ar	ıy:														_		

Date: 7/17/06 #2 Relinquished By: (Sig) #3 Relinquished By: (Sig) Date: Date: #1 Relinquished By: (Sig) Time: 1 700 Time: Time: Company Name: Company Name: Company Name: FED Date: 7/17/06 #2 Received By: (Sig) Date: #3 Received By: (Sig) Date: #1 Received By: (Sig) Company Name: Time: Company Name: Time: Time: /700 Company Name:

Note (1): If "N" lab will hold samples to await remainder of project-maximizing batch size and minimizing QC ratio; if "Y" lab will begin processing batches now.

Note (2): Samples stored 60 days after date report mailed at no extra charge.

Note (3): All lab copies of data destroyed after three years.

COMPUCHEM
a division of Liberty Analytical Corp.

CHAIN-OF-	CUSTODY	RECORD
- VII///////////////////////////////////		NECUND

No.

									Corp.					3 (6	4 7		Client Address :										Pol	nt-of	-Cor	ntact:	
	a u			/ladi			-		Josp.		104	KER	<u>وي،</u>	UN.	TUD	, У	GA	KER	(v	IR	0~) .						Im Cup	
· .		JC		riau Iry, i				le			Carrier		(FæD				14	20			تعد			(2	> .		Tele	epho	ne N	No.: 412/264-2080	
1				300-							Airbill N	10. : Py	8028	32698	7/16	65	(0	MA					0	/	5/0	8	San	nplir	ng ce	omplete? Y or N (see Note 1	()
									١, _		Sample	r Name	:	D 5.	*1	> نمبر	Sampl	ler Signa	ature	∌ ;		, ,								oific (PS) or Batch (B) QC ?	
BOX #	1			ace \					l'rip B	lank		BOX #2	A. HCI	+ Ice	F. Ice O	nly		BOX #3	3	F. F	iltere	d		Bo	x #4		Н. Н		ш.	Box #5 C. CLP 3/90 T. TO	CLP
				nd V		r		7. 0				ĺ	B. HNC		G. Othe					U. L	Inflite	ered					M. N	fediu	m	s. sw-846	
				hate					Vaste					H + Ice		SO4 + Ice											L. Lo	W		W. CWA 600-series	
			Rins						Other_						I. ZnAc	+NaOH +	ice	ſ												O. Other	
<u> </u>		5. 8	SOII /	Sec	ime	nt / s	Slud	ge				<u> </u>	E. Unpr	eserved				<u> </u>						<u> </u>							
(9	cha			ple s m		mu	m)		Date:Year			Box #1	Preservative og	Filtered / Unfiltered ox	Box#4	Box #5	No. of Bottles	or Lab QC or DUP)		O	Pesticide	PCB Herbicide	Metals / Mercury	de	TOC / TOX	/ ТРН		Z		PAGE 3 of A Remarks / Comments (see Notes 2 & 3)	<u>-</u>
									at a		Time	Matrix	Press	層	l &	Method	9	Use for (MS or I	Į į	Š	\$	ا ا	Peta	Cyanide	8	စ္တ					
Ao	c	١	1	B	,	٥	0	0	7/	16	09:32	5	E				1			¥2							\dashv	オ	+		
Ao	-	1	1	4		0	7	1	3/	11	09:36	5"	E													1	7	*	十		
	Т	-	<u> </u>	1)								-3	1	 	 		 							-		\dashv	4	4	-		
AO	1	1	1	13	4		-				08:5 6	2	E					ļ			\dashv	-	1			\dashv	4	4			
Ac		Ш	1	8	\perp	3			l .	- 1	04:01	_5_	E					ļ			4	_	1			\bot	4	4			
AC	C		1	Δ	1	4	0	0	7/	16	08:13	5	E				. ,		Ц			\bot	1					1			
Ao	C	1		8	1	4	0	0	71	16	28:13	5	E					DUP					/					4		DUPLICATE	
Ac	C	١	1	B	1	4	O	۷	71	16	08:25	5	E				, ,						/			T	T.	1			
AC	C)		B		' '				- 1	O8:25	5	E				1	MS/M	5,				V			1	1	才		MSMSD	•
									1		:							7											1		
									1		:								П		\top		T		1	7	1	十	T		
Client	Spe	cla	Ins	truc	tion	s:							,		· · · · · · · · · · · · · · · · · · ·			4				1	<u></u>	LI		L	L	l		Temperature°(
Lab: F	ecei	ved	in C	3000	l Co	ndit	ion	? Y	or N		Describ	e Proble	ms, if an	y:								******									_
#1 Re	nqui	shed	Ву:	(Sig)	ح	Ŀ	K.	lei		1	Date: ~	di da	#2 Relin	quished E	By: (Sig)					Date:			#3 [Relin	quisi	ned l	Ву: (8	Slg)	Date:	
Comp	ny N	ame	:			ر. بـــــ	BL	Jk	است	<u>e.</u>		Time:	1200	Compan	y Name:						Time	:			npan					Time:	
#1 Re	elvec	Ву	(Si	g)		Æ		7			Х	Date: 7	42/00	#2 Rece	lved By: (Sig)					Date:							(Sig)		Date:	
Comp	ny N	ame	:								······································	Time: /	1700	Compan	y Name:						Time	:		Con	npan	y Na	me:			Tíme:	

No.

									IVI		Project	Name :	MOR	Che	7		Clien							Po	int-of	-Con	tact :		·····			
	ac								Corp.		BAC	KGRI	שנוטט	2 2	TUD'	<i>y</i>	BA	Ker		Œ	NV	IR	ON			1			Tim	G	صرب	
		ວເ	01 N Ca	nadi Iry, i				16			Carrier			EX				0 R		ڪ 3	K	RI				Tel	epho				- 20	98
				00-										3269	87/76	165	Cox	AOPO	45	P	4	15	5/0	8		4	•		-	•		Note 1)
												r Name		AKIO	<u>u/s /</u>		Samp	ler Signa	ature	:		E	17/	C	·····						h (B) Q(
вох	#1	-	Surfa			-			Trip B	Blank		BOX #2	A. HCI		F. Ice O	•		BOX #3	3	F. Fi	tered			Box #	/4		ligh			C. CLP		T. TCLP
			3rou			r .		7. (B. HNO		G. Othe					U. U	nfilter	ed				M. 8	Viediu	m		S. SW	846	
l			.eacl Rinsa						Waste					H + Ice		SO4 + Ice		1					ŀ			L. L	.ow			W. CV	/A 600-se	ries
			insa ioil/		ll	n# / :	اراما		Other.					04 + Ice	I. ZnAc	+NaOH +	ice	1					l							O. Oth	er	
<u> </u>		٥, ٥		seu	iiiie	11.7	Siud	ge				<u> </u>	E. Unpr	eserved										·					<u> </u>			
- (t	9 ch		amp			mu	ım)		Date: Year 7 (7)	1	Time	Matrix Matrix	Preservative xos	Bitered / Unfiltered as	Expected Conc. sog	Box #6	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	svoc	Pesticide PCB	Herbicide	Metals / Mercury	Cyanide	&G/TPH		1-1-2			emarks	4 of √Com lotes 2	ments
A	0	1	1	B	1	1	0	0	7/	17	10:05		E	-			1			U)	<u>u. ju.</u>				- 0		1	\dagger	 			errily.
1) c	1	١	0	1		9	1	7/	בו	10:10	5	E	***			1						v				7	T				
AC		1	1	0	1	1	0	1	71	12	10:10	5	<u>E</u>				1	DUP					1				1		Du	PLIC	ATO	E
A	y C		1	B		2	O	0	71	<i>1</i> 7	10:30	5	E		·		. 1						1				1					
1	<u>1</u>	1	1	B	1	2	0	2	21	17	10:41	5	تے				1										J					
A	oc		1	B	1	2	0	2	71	17	10:41	5	ت	_			1						7		1	\prod	オ	1				***********
	$oldsymbol{\perp}$								1		:													\top	T	\prod	\top	十				
									/		:													\top	十		+	\top				
									1		:									\top	\top			\top	T		\top	1			·	
									1								·, ·····		\prod	十	+	$\dagger \dagger$		\top	1		\top	+	<u> </u>			
Cilent	s Sp	ecial	ins	truc	tion	s:						······································							<u> </u>	l	l	اــــــا	LL		ــــــــــــــــــــــــــــــــــــــ	LJ.		L	Te	mperati	ure	°C
Lab: I	Recei	ved	in G	ood	Co	ndit	ion'	? Y	or N	I	Describ	e Proble	ms, if an	y:																		
#1 Re	inqui	shed	Ву:	(Sig	٠	2		7 . /	1	•	4	Date: 7	111/00	#2 Relin	quished 8	ly: (Slg)				C	Date:		A	3 Re	linqui	shed	By: (\$	Sig)			Date	e:
Comp	any N	ame	:				B.	416	<u>ميل</u>	R	V	Time:	1700	Compan	y Name:					7	ime:			Comp				E-l		. 4		
#1 Re	ceive	d By:	(Sig)		Ξ,	<u> </u>		E					#2 Rece		Sig)					ate:			3 Re							Date	
Comp	any N	lame	<u>.</u>					****				Time:	<u>'טטר'</u>	Compan	y Name:		Time: Compar												•	Tim	·····	

CHAIN-OF-CUSTOI	DY RECORD
-----------------	-----------

	JOMPUC			Project	Name :	MC	3 C	.67		Client Address :									Poin	t-of-(Conta	ict :		······································
ad	division of Liberty An	-	Corp.	BAC	KG	ROUN	<u> ۱</u>	5701	54	BAK	ĕR.	A		800	ئے	الد	٦.		ŧ.	TIM	۸	CULP		
	501 Madison Av			Carrier	: F	ξD	Œχ			421	o Ro	us	€ /	2	7	<u> </u>			Tele	phon	e No	: 412/	269-20	⊃ 9 &
	Cary, NC 279 1-800-833-50			Airbill N	lo.: 8	1802	832	7001			ADIP				PA	15	5/08	ρ				nplete?(🕏		
				Sample	r Name	: V	ARIOL	ی ر		Sampl	er Signa	ture	:	ے	Ţ	1<			Proj	ect-s	pecifi	c (PS) or B	atch (B) G	C?
BOX #1	1. Surface Water	6.	Trip Blank	}	BOX #2	A. HCI	lce -	F. ice O	-		BOX #3		F. Filt				Box #	1	H. H	gh		Box #5 C.		T. TCLP
	2. Ground Water		. Oil			B. HNO		G. Other				(U. Un	filter	ed	- [M. M		1		SW-846	
	3. Leachate		. Waste			C. NaO		H. NaHS								İ			L. Lo	N			CWA 600-8	series
	4. Rinsate		. Other		ļ			I. ZnAc+	·NaOH +	ice	l										40	Ο.	Other	
L	5. Soil / Sediment /	Sludge	1		<u> </u>	E. Unpr	eserved				J										لـــٰـــا			
(O al-	Sample ID		Date:Year, 2000		Box #1		Bitered / Unfittered ox x		Box #5	ottles	r Lab QC DUP)			6)	a	Mercury	×o	PH		I		Rema	ırks / Coı	mments
(9 cn	naracters maxim	um)	Date: Yea	Time	Matrix	Preservative	Filtered /	Expected Conc.	Method	No. of Bottles	Use for I	ΛΟΑ	svoc	Pesticide	Herbicide	Metals / Mi	Cyanide , TOC / TOX	0&G / TPH	•	4		(Se	e Notes 2	2 & 3)
Aoc	33601	00	7/12	10:09	5	E				1						V		_	(1				
	36601	\neg		1	1	E				(DUP					7				1		DUR	CATE	
AOC	30601	03	37/12	10:12	5	E				1						U				1				
1 " []	3 3 6 0 2	1 1	1		1	ت				1						1		Π		7				
	36642					E				ł					T	1			I,					
1 -1 -1	36604			1		Œ	_			- 1						7		T	Π,					
	38604			1		E				ı					T			Γ	Π.	7		j.		
	38605	7			ــــــــــــــــــــــــــــــــــــــ	E	_			1						7			П	7	П			
	30605	1 1		. 1		رية	-			1						V				7				
	0607		l.	1	1	نظ				,	:					V				7		<u> </u>		
1	pecial instructions:																					Temp	erature _	°C
Lab: Rece	eived in Good Cond	dition?	Y or N	Descri	be Probl	ems, if a	ny:																	
		21.1	lein	1	Date:	1/14/00	#2 Relli	nquished	By: (Sig)					Date:			#3 Re	linqui	shed	Ву: (S	lg)		C	Date: -,
Company	Name: B	4/	<u> </u>	· · ·	Time:	1700	Compa	ny Name:					•	Time			Comp	any N	lame:					Time:
#1 Receiv	red By: (Sig) /=	هر ش	Eχ		Date: -	1/4/00	#2 Rec	elved By:	(Sig)					Date:	····		#3 Re	celve	d By:	(Sig)	,		<u>. C</u>	Date:
Company	Name:				Time:	1701	Compa	ny Name:						Time	<u> </u>		Comp	any N	lame:		-prove		7	lime:

Note (1): If "N" lab will hold samples to await remainder of project-maximizing batch-size and minimizing QC ratio; if "Y" lab will begin processing batches now. Note (2): Samples stored 60 days after date report mailed at no extra charge.

Note (3): All lab copies of data destroyed after three years.

<u> </u>
COMPUCHEM
a division of Liberty Analytical Corp.

CHAIN	OF C.	CTANV	RECORD
CHAIN.	.() - .	1STOUY	REGURD

No.

		•	71 IMII 4"U	'I -OO'	0 0	~ 11		\smile							
COMPUCHEM	Project Name :				Client A								Point-	of-Co	ntact :
a division of Liberty Analytical Corp.	BACKGR	هساه	STUDY	<u> </u>	BAKE	- 12	<u> </u>	V.							CULP
501 Madison Avenue	Carrier: /=	ED G	Ĩ 🗙		420	· Ko	U.5	k 12	R	D			Telepl	hone	No.: 412/269-2098
Cary, NC 27513 1-800-833-5097	Airbill No.: 8	18028	327001		CORA	1000	415		PA	15	<u>/08</u>	_			complete?(Y or N (see Note 1)
1 500 500 500.	Sampler Name		ARIOUS		Sampler					JK					cific (PS) or Batch (B) QC ?
3OX #1 1. Surface Water 6. Trip Blank	BOX #2	A. HCI + Ic		•	E	BOX #3		Filtere			Box #4		H. High		Box #5 C. CLP 3/90 T. TCLF
2. Ground Water 7. Oil		B. HNO3 +					U.	Unfilt	ered	- 1			M. Med		S. SW-846 W. CWA 600-series
3. Leachate 8. Waste	i		+ Ice H. NaH5 + Ice I. ZnAc+										L. Low		O. Other
4. Rinsate 9. Other 5. Soil / Sediment / Sludge		E. Unprese	,	rivaOn + ic	,-										0. 03,101
3. 3017 Sediment 7 Stadge	1 9044			Box #5				1				T		T T	
Sample ID (9 characters maximum)	Time Matrix sog	Preservative 8	Filtered / Unfiltered	Method	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	Pesticide	PCB Herbicide	Metals / Mercury	Cyanide TOC / TOX	O&G/TPH	7		PAGE 2 of 14 Remarks / Comments (see Notes 2 & 3)
AOC 8 B G O 7 1 1 7/12	13:56 5	匡								V		igsqcup	<u></u>	11	
AOC3BG10007112	1 1 -	E	_		1					11			V	11	
AOC3BG10047112	09:50 5	E			1								V	11	
AOC 3 BG 1 100 7/12		E			1					~			v	11	
A 0 C 3 B G 1 1 0 5 7/12		Œ	-		1					 			/	11	
AOC3BG12007112		سے			/								/	1	
AOC 3BG 1205 7/12	1 1	E			1			Τ		7				11	
A 0 C 3 B G 1 20 5 7/12		E			J	Dup				V			V		DURLICATE
AOC 34 G 0 600 7/12		ت			1					-			-	1	
	12:20 5	医			1					V			•	11	
Cilents Special Instructions:				·											Temperature°C
Lab: Received in Good Condition? Y or N	Describe Prob	lems, if any:	• .								·				
#1 Relinquished By: (Sig)	. / //		2 Relinquished	By: (Sig)				Da	te:		#3 Re	linqui	shed B	y: (Sig) Date:
Company Name: BAKER	// Time:	¥1700 C	Company Name	<u> </u>				Tin	ne:		Comp	any N	lame:		Time:
#1 Received By: (Sig) /=E_D EX	Date:	7/14/00 #	2 Received By:	(Sig)				Da	ite:		#3 Re	ceive	d By: (Sig)	Date:
Company Name:	Time:	1700	Company Name: Time: Comp							any N	lame:		Time:		

Note (1): If "N" lab will hold samples to await remainder of project-maximizing batch size and minimizing QC ratio; if "Y" lab will begin processing batches now. Note (2): Samples stored 60 days after date report mailed at no extra charge.

Note (3): All lab copies of data destroyed after three years.

CHAIN-OF-Cu	JSTODY RECORD	; No
Project Name: MCA CLEJ	Client Address :	Point-of-Contact :
BACKGROUND STUDY	BAKER ENVIR.	Jim CUED
Carrier: Feb EX	420 ROUSER ROKO	Telephone No.: 412/269-2098
		1

		-	27	~ /~ (\$ /	<u> </u>	, ((7	المحري	Sex.	<u>C</u>		77	1 /	. •							J. Cor. 1		
	501 Madison Avenue Cary, NC 27513	9	Carrier	: F.	æD.	ŒX			42	20 /	%٥	<u> </u>	€,	K.	K	<u>0~1</u>	>		eleph	one f	lo. :	412/269-	- 20	4 8
	1-800-833-5097		Airbill N	10.: 8	1802	2832	700) [Co	RAC	P	04	15		A	15	708	9 8	ampl	ng c	omple	ete? (Ý or N	(see N	lote 1)
``	3		Sample	r Name	:	VARI	درن		Sampl	er Signa	ature	:		<u>ت</u> ت	Fic			Р	roject	-spec	cific (f	PS) or Batch (E	3) QC (?
BOX #1	1. Surface Water	6. Trip Blank	(BOX #2	A. HCI+	Ice	F. Ice O	nly		BOX #3		F. Fill	tere	d		Box	#4	H.	. High		Box	#5 C. CLP 3/9	0	T. TCLF
"Fig.	2. Ground Water	7. Oil			B. HNO		G. Other	-				U. Ur	nfilte	red				М	. Medi	um		S. SW-846	i	
		8. Waste					H. NaHS											L.	Low			W. CWA 6	00-serie	es
		9. Other					I. ZnAc+	NaOH+	Ice												1	O. Other_		
	5. Soil / Sediment / Sludg	<u>}e</u>		<u> </u>	E. Unpre	eserved				<u> </u>						L					Ш_			
	Sample ID	r. 20ca		Box #1		Filtered / Unfiltered on the control of the control		Box #5	ottles	tab QC DUP)					Mercury		×	Ŧ.	I		1	PAGE $\frac{3}{100}$	- Comn	nents '
(9 ch	aracters maximum)	Date:Year_	Time	Matrix	Preservative	Filtered /	Expected Conc.	Method	No. of Bottles	Use for La (MS or DU	VOA	svoc	Pesticide	PCB Herbicide	Metals / Mercury	Cyanide	TOC / TOX	0867	a	-		(see Note	es 2 &	3) ·
Aoc	3 8 6 0 8 0	0 7/12	01:35	5	E				1						<u>/</u>				V					
AOC	3 3 6 0 8 0	0 7/12	.01:35	5	<u> </u>	•			1	MS/ALS					1				V		1	15/M5D		
40 C	336080	1 7/12	07:45	S	Œ				1						1				\			/		
	336030				Œ				1						~				1					
Aoc	386030	67/12	11:21	5	E				1						/				✓					
	366090				ست				1						V				/					
AOC	386090	67112	19:15	5	E				1						1				/					
AOC	336070	0 7/12	10:12	5	سي										,				1	Ĺ				
	336070				ست ا)						1				/					
AOC	435020	0 7/12	13:04	5	烂	<u> </u>		<u> </u>	1	<u> </u>									/					
i	pecial Instructions:																					Temperature	<u>}</u>	°C
Lab: Rece	eived in Good Condition	? YorN	Descri	be Proble	ems, if ar	ıy:	*****									·								
#1 Relinqu	uished By: (Sig)	. Kle	inly	Date:	7/19/00	#2 Relir	quished i	By: (Sig)					Date);		#3 F	Relino	quish	ed By:	(Sig)			Date	:
Company			<u> </u>	Time:	1700	Compar	ny Name:						Time	e:		Con	npany	y Nan	ne:				Time	:
#1 Receiv	ed By: (Sig)	D 5	X	Date:	7/14/0	#2 Rece	eived By:	(Sig)				ı	Date	3 :		#3 F	Recei	ved E	By: (SI	g)			Date:	:

#1 Received By: (Sig) F = D E X Date: 7/14/ve #2 Received By: (Sig) Date: #3 Received By: (Sig) Date:

Company Name: Time: 1700 Company Name: Time: Company Name: Time:

Note (1): If "N" lab will hold samples to await remainder of project-maximizing batch size and minimizing QC ratio; if "Y" lab will begin processing batches now.

Note (2): Samples stored 60 days after date report mailed at no extra charge.

Note (3): All lab copies of data destroyed after three years.

_ /:
COMPUCHEM
a division of Liberty Analytical Corp.

CHAIN	-OF-Ci	JŚTODY	Y RECO	RD
	- -	JO 1 UD 1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

a distance of the structural of the	11 10,000		WCB CL	.c. T	Client	Addres	ss:						Poin	it-of-(Conta	act:		
a division of Liberty Analytical Cor	10nc	KGROU	$\leq cc_{ij}$	TUDY	BA	KER	EN	VIR	٥٨٨	NEA	JI A	-	7	in	<u> </u>	ULP	i	
501 Madison Avenue Cary, NC 27513			DEX		420	ROL	غود	R	Ro.	AD			Tele	phon	e No	: 414/269-	2098	
1-800-833-5097	Airbill N	No.: 818	302832		Cox	LAOP	<u> </u>	5.	PA	15	5/01	3	Sam	pling	cor	mplete? Yor N	see No	te 1)
	Sample	er Name :	VARIOU	25	Samp	ier Signa	ture		E 3	1			Proj	ect-s	pecifi	ic (PS) or Batch (B) QC ?	
· ·	o Blank	BOX #2 A.	. HCl + Ice	F. Ice Only		BOX #3	F	. Filter	ed		Box#	4	H. H			Box #5 C. CLP 3/90		T. TCLP
2. Ground Water 7. Oil		1	. HNO3 + Ice	G. Other			L	I. Unfil	tered				M. M	edium	,	S. SW-846		
3. Leachate 8. Wa		ł		H. NaHSO4 + Id									L. Lo	w	I	W. CWA 60	10-series	;
4. Rinsate 9. Oth	ner	I		I. ZnAc+NaOH	+ Ice										Ī	O. Other		
5. Soil / Sediment / Sludge		<u> </u>	. Unpreserved			<u> </u>					<u></u>							·
• Sample ID (9 characters maximum)	Date:Year. 2000	Matrix Box #1 B	Preservative xes	Expected Conc. Method	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	SVUC	PCB Herbicide	Metals / Mercury	Cyanide TOC / TOX	O&G / TPH		DH.		PAGE 4 Remarks / C (see Note	omme	ents
A 0 C 4 B G 0 2 0 0 1	7/12 13:04	5	E -			MS/MS	1 1			6			4			MS/MSD		
AOC4BG02075	7/12 13:45	5	E -		1					1			·	1				
A0C4BG03007	1/12/6:48	5	E _		1					7			6	1				
A0C43G030C7	1		E -		11					7			1					-
A0C4BG01005		1 1	E -		1					7				1	\Box	****		
A0C4BG01047			E -		1					J				7	\prod	_		
A0 C4BG 04007	i i		E -		1					V			١,	オ	\Box	***		
A0C4BG04077	i i	1 1	E -		1					V			,	7	\Box	* W		
A0C43G0800			E -							1				\mathcal{T}	П	***************************************		
A0 C486 0809-		1	E _		17									7	I			
Clients Special Instructions:									·						.11	Temperature		°C
Lab: Received in Good Condition? Yo	r N Descri	be Problems	s, if any:					· ·										
#1 Relinquished By: (Sig)	sindre	Date: 7/1	4/co #2 Relin	quished By: (Sig))	<u></u>		Dat	e:		#3 Re	inquis	shed E	By: (SI	g)		Date:	
Company Name: BAKER		Time: 17	OO Compan	y Name:				Tim	ne:		Comp	ny N	ame:				Time:	
#1 Received By: (Sig) FED E	X	Date: 7//	4/00 #2 Rece	ived By: (Sig)				Dat	e:		#3 Re	selved	1 By: (Sig)			Date:	
Company Name:		Time: 17	Compan	y Name:				Tin	ie:		Comp	any N	ame:				Time:	

CHAIN-OF-CusTODY RECORD

COMPUCHEM Fr	oject Name: MC	3 CLET	Client Address	•	F	Point-of-Contac	ct:
a division of Liberty Analytical Corp.	BACKGROUN	n Study	BAKER 6	ENVIRON ME	MAL		Corb
FOA Madiaan Arranta I	arrier: (= (= D	€x		DSER ROA			: 412/269-2098
1-800-833-5097	rbill No.: 8180	28327001	CORAOPO				plete? (Yor N (see Note 1)
		MALIOUS	Sampler Signatu				e (PS) or Batch (B) QC ?
3OX #1 1. Surface Water 6. Trip Blank	BOX #2 A. HCI +	•	BOX #3	1		· ·	30x #6 C. CLP 3/90 T. TCLP
2. Ground Water 7. Oil	B. HNO			U. Unflitered		И. Medlum	S. SW-846
3, Leachate 8. Waste 4. Rinsate 9. Other	C. NaOl	H + Ice H. NaHSO4 + Ice D4 + Ice I. ZnAc+NaOH +	1	·	L	Low	W. CWA 600-series O. Other
4. Rinsate 9. Other 5. Soil / Sediment / Sludge	E. Unpre		100				O, Other
o, don't dealinent to dage	Box #1 Box #2						
Sample ID (9 characters maximum)	vative	Filtered / Unfiltered	des the QC rP)	SVOC Pesticide PCB Herbicide	Cyanide TOC / TOX O&G / TPH	H d	PAGE 5 of 14 Remarks / Comments (see Notes 2 & 3)
Date	Time Matrix Preset	Met D Tilt	2 38	SV SV SV SV SV SV SV SV SV SV SV SV SV S	8 5 8		
40C4BG10007/12/1	5:42 5 E			\ \ \ \ \ \ \ \			
AOC4BG10107/12/1			,	\ \ \ \ \			
A 0C43609007/121	1 1		1			V	
AOC48609007/121	1 I	-	1 Dup				DUPLICATE
			 				50,200
A OC 4 B G 0 9 0 8 7/12 1			 	1111			
10C4BGOG007112B	1:10 5 E		1-1-1-	1111		V	<u> </u>
AOC4BG0608711211	1:40 5 E		1			V	• 1
AOC485060871121	1:40 5 E		1 DUP	\ \ \ \ \ \ \		4	DURLICATE
A OC 4 3 G O 6 1 1 7/12/1	1 1						
A0C4BG061171121	1		1 DUP	V		V	DUPLICATE
Clients Special Instructions:							Temperature°C
Lab: Received in Good Condition? YorN	Describe Problems, if a	ny:	-				
#1 Relinquished By: (Sig) File Blein	Date: 7/14/00	#2 Relinquished By. (Sig)	1	Date:	#3 Relinquis	hed By: (Sig)	Date:
Company Name: KAKER	Time: /700	Company Name:		Time:	Company Na	ame:	Time:
#1 Received By: (Sig) /=ET) EX	Date: 7/19/00	#2 Received By: (Sig)		Date:	#3 Received	By: (Sig)	Date:
Company Name:	Time: 1709	Company Name:		Time:	Company Na	ame:	Time:

~ / ~
COMPUCHEM
a division of Liberty Analytical Corp.
•

	AF A.	COTABLE	RECORD
$I \cdot H \Delta I M$	_{		

	•	ame: MC					Addres								Poli	nt-of-	·Con	tact:	
a division of Liberty Analytical Corp.	BAC	KGRO			1		15=1			NU					:	II	M	CULB	
501 Madison Avenue Cary, NC 27513	Carrier:	FED	Ex	·		4:	20 /	۵.	ودر	ER	-	K	0		Tele	epho	ne N	0.: 412/269-2098	
1-800-833-5097	Airbill No.	.: 8180	2832	7001			KAOK				PA	15	101	5	San	nplin	g co	omplete? 🛭 or N (see Note 1)	ļ
	Sampler i	Name :	IARU	ous		Sampl	er Signa	ture	:	, (5-T X	<			Pro	ject-s	spec	ific (PS) or Batch (B) QC ?	
BOX #1 1. Surface Water 6. Trip Blank	B	30X #2 A. HC	l + Ice	F. Ice On	ly		BOX #3		F. Fille	ered		Во	x #4		H. H			Box #5 C, CLP 3/90 T. TC	LP
2. Ground Water 7. Oil		B. HN	O3 + Ice	G. Other					U. Un	filtere	đ				M. N	/lediur	n	S. SW-846	
3. Leachate 8. Waste		C. Na	OH + Ice	H. NaHS	04 + Ice										L. Lo	WC		W. CWA 600-series	
4. Rinsate 9. Other				I. ZnAc+t	VaOH + I	lce	1											O. Other	
5. Soil / Sediment / Sludge		E. Un	preserved		·		<u> </u>					丄						<u></u>	
	E	Box #1 Box	2 Box #3	Box #4	Box #5			П	\top	T	П	T	T		П	T	Т	PAGE 6 of 1	4
Sample ID (9 characters maximum)	d)	Matrix Preservative	Filtered / Unfiltered	Expected Conc.	Method	No. of Bottles	Use for Lab QC (MS or DUP)		SVOC	DOI:	Herbicide	Cyanide	TOC/TOX	у трн		U.		Remarks / Comments (see Notes 2 & 3)	
Date	a la	Matrix	1 2 2 2	B	Mett	Š	SS (38	١Ş١	SKO		E E		0	80		11-			
A 0 C 5 & G 1 5 0 0 7/13	07:52	ئے سی	-			1					١	7				1			
AOC 5 0 GO 5 0 G 7/13	l	5 6				t					L	1				7			
AOC50605067113	j	5 6				1	مون 🛭				V	1				4		DUPLICATE	
AOC5B606007/13	. 1	5 E				1					L	1				7			
A 0 C S B G U G O 4 7/13		5 E						П				力				ナ	十		
A 0 C 5 A G 0 7 0 0 7/13	- 1	5 E				1		П	1	1						7	T		
A 0C 5 B G 07 0 6 7/ 12	1	5 5		-		1		\Box	十	1					1	7	╁		
AOCSBG 08007113		5 6		.		1	 	\Box	十	1		T	T	\vdash		\mathcal{I}	\dagger		
A OCS BG 08 0 27/13	1	5 6		_		1			\top	\top						7	1		
AOC 5 AG 1000 7/13		5 E				,	 		$\neg \uparrow$	╁	 	+				+	╁		-
Clients Special Instructions:	10.12.		<u></u>		I		<u> </u>				<u> </u>		لـــــل	LI	<u>_</u>			Temperature °C	<u> </u>
Lab: Received in Good Condition? Yor N	Describe	Problems, If	anv:		······································							*********							
#1 Relinquished By: (Sig)		Date: 7/4/0		nquished B	y: (Slg)				D	ate:	***************************************	#3	Relir	nquis	shed	By: (8	Sig)	Date:	
Company Name: BAKER	V	Oטרו :Time		ny Name:					T	ime:	`		mpa					Time:	_
#1 Received By: (Sig) FED EX		Date: 7/4/6			Sig)					ate:						(Sig)		Date:	
Company Name:	1	Time: 1701	Compa	ny Name:		· · · · · · · · · · · · · · · · · · ·			Ţ	lme:		Co	mpa	ny Na	ame:			Time:	_

-	J. Commission of the Commissio
	COMPUCHEM
	a division of Liberty Analytical Corp.
	•

CHAIN-	OF-Cu	STODY	RECORD

	a division of Liberty Analytical Corp.										Client Address :							F	Point-of-Contact :													
8	divisi	on of	Libe	erty A	Anal	ytica	l Co	orp.		4	Ac	IK.Co	ROUA	<u>u</u>	Stu	> \		KER				V.					T/M CULP Telephone No.: 412/269 - 2098					
	50)1 M					;			Car				EX			42	.0 R	80	٠,	\$ /	2	1	<u>C</u>								
			•	IC 2 333-						Airb	III N	0.: 81	8028	332.	1001		COM	MOP	ا م	15	F	A	1:	5/0	8	8	am	pling	g co	mplete? Y or N	(see	Note 1)
		1-01	JU-C	000-	อบฮ	"						Name		ARI				er Signa				Œ:	J 10	<u> </u>		F	roje	ect-s	peci	fic (PS) or Batcl	1 (B) QC	
3OX #1	1. 5	Surfa	e V	Vater		•	3. Tı	rip Bl	ank			BOX #2	A. HCI +		F. Ice O	nly	***************************************	BOX #3			tered			Вох	#4	ŀ	ł. Hig	gh		Box #5 C. CLP	3/90	T. TCLP
	2. 0	3rour	d W	/ater		7	7. 0	il			İ	B. HNO3 + Ice G. Other						U. Unfiltered							M. Medium				n	s. sw-		
	3. l	.each	ate			8	8. W	/aste					C. NaO	H + Ice	H. NaH	304 + Ice	•									L	Lo	N		1	/A 600-ser	ries
	4. F	Rinsa	te			9	9. O	ther			-			04 + Ice	I. ZnAc	NaOH +	Ice													O. Oth	er	
	5. 5	Soil /	Sed	imen	t/S	ludg	e						E. Unpr	eserved			· · · · · ·	<u> </u>														
(9 cl		amp			mu	m)		Date: Vest. 2 000		; j	arin:	Matrix Matrix	Preservative so 8	Filtered / Unfiltered 98	Expected Conc. xog	Method	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	svoc	Pesticide	PCB Herbicide	Metals / Mercury	Cyanide	TOC / TOX	O&G / TPH	- 1	I A		PAGE		ments
Aoc	- 5	B	6	1	0	0	5	7/	13	to:	30	5	E				1						1			١	ļ	4				
Aoc		+	_									 	3				1						~	П				7				
Aoc										1		F .	<u>E</u>			<u> </u>	17	Dup			1	一			7	\top	1	J	1	DUPLIC	A 7-12	
		T								}		I	1	 	 	 	 	12000		\vdash	十	-	+	H	\dashv	\dashv	十	+	+	TO CACA	,,	
Aloc	- 5	0	G	0	9	0	3	7/	13	11:	06	5	<u>E</u>			ļ	 	-	-		_	- -	1	\vdash	-	\dashv	+	4		ļ		
Ao	2 5	13	G	1	S	D	0	7	13	11:	: 33	5	E	-				ļ					~		_	_	_	4	_			
Ao													E										<u></u>					1				
AOC						1 1				ı		1	Œ											$ \ $				1				
Aoc	- 1	13											E	_			1						-	Π				J				
	$\neg \neg$		T	1				7		i		I -	12				'	Dup	T				Tu				1	J		Dualie		
AOC	+		S	1,	1	0		T					E	*****				130p	十			\dashv	Ť			1	7	7	\top	1 Dep.	.47.6	
AU	<u>너</u>	1/3		1/		V	<u> </u>	7	<u> </u>	1/4	:50	1 5	<u> </u>	_ 	<u>. I</u>	J	<u> </u>	<u></u>	ــــــــــــــــــــــــــــــــــــــ	L	Ll.		10	1		1				Tempera	ture	°C
Clients 5													······································									······				 -						
Lab: Re						> A	? 	y or	<u> </u>	7	scri	/	lems, If a	#2 Rell	naulehad	Bu: (Sia)					Date	a·		#3	Relin	aule	hed	Rv [,] (Sia)		Da	te:
#1 Reline			: (Si	g) ,	<u>ز</u> کے	77	4	يخر	سا	<u>~//</u>	4												Relinquished By: (Sig) Date: Time:			***						
Compan	y Nan	ne:			•			K			#_			Compa				 			Tim			1								
#1 Rece	ved E	ly: (S	ig)		<u> </u>	7	≥_	ϵ	X			Date:	11	#2 Rec				Date: #3 Received By: (Sig)				Dat	*****************************									
Company Name: Time: 100 Company Name:							:		Time: Company				ıy N	y Name: Time:																		

Note (1): If "N" lab will hold samples to await remainder of project-maximizing batch size and minimizing QC ratio; if "Y" lab will begin processing batches now. Note (2): Samples stored 60 days after date report mailed at no extra charge.

Note (3): All lab copies of data destroyed after three years.

CHAIN-OF-C	USTODY RECORD	No. 9015 /6
Project Name: MCA CLET	Client Address :	Point-of-Contact :
BACKGROUND STUDY	BAKER ENV.	JIM CULP
Carrier: FED EX	4-20 ROUSER ROAD	Telephone No.: 4-2/269-2098
Airbill No. :	C***	Committee constitute of the state of

	501 Madison Av	venue					-				71.33.7				<u> </u>					~~	7 600			
	Cary, NC 27	Carrier						4-20 ROUSER ROAD							Telephone No.: 412/269-2098				3					
	1-800-833-50			Airbill I	Yo. :					Co	KAO				PA							e?(Y)or N		
				Sample	er Name) :	VARI	005	•		ler Sign					TK						S) or Batch (
BOX #1	1. Surface Water	6	. Trip Blani	k	BOX #2	A. HCI		F. Ice C			BOX #		F. Fil	itered			Вох	#4	H. HI			5 C. CLP 3/		T. TCL
	2. Ground Water	7	. OII			B. HNC	3 + Ice	G. Othe	r		1		U. U							edium	1	S. SW-84	_4	7. 101
	3. Leachate	8	. Waste			C. NaC	H + Ice	H. NaH	SO4 + Ice	•	1								L. Lo			W. CWA	-	_
	4. Rinsate	9	. Other		1	D. H2S	04 + Ice	I. ZnAc-	+NaOH +	ice	1								L. LU	***		O. Other		•
L	5. Soil / Sediment /	Sludge)		<u> </u>	E. Unpr	reserved															o. omer_		
			To	T	Box #1	Box #2	Box #3	Box #4	Box #5		Τ	1 1	$\overline{}$	$\overline{}$	_	П			11	T				
		••	Date:Year. 2000				Filtered / Unfiltered	5.			ပ္က					Z,					P2	ice E	3°t	19
/o at	Sample ID				1	five	5	8		of Bottles	# G	11			1	<u>a</u>	,	ς I Ξ	:	푀	1 1 1	Remarks /	Commo	ents.
(9 (1	naracters māximi	um)	ĕ		×	\ <u>\$</u>	8	§	72	8	70		:ا ہ	ğ	릙	=	ا بو	2 6	: '	d		(see Not	es 2 & 3	3)
			Date	l me	Matrix	Preservative	الله الله	Expected Conc.	Method	SO.	Use for Lab QC (MS or DUP)	8	ĕ۱		Herbicide	eta	ig g	08G/TPH		7]] '			•
Alala	1//0/5/1/4						 "-	 ""		 _	MS/	}	<u>ه ا</u> د	<u>~ °</u>	ᆛᄑ	₹	纤	= 10	++	- -			· · · · · · · · · · · · · · · · · · ·	
, , ,	43611					E	<u> </u>	ļ			MED	\sqcup	_ _	_	_	4		\perp	11	1	/	h5/m5	0	
	40611	1 1				Œ										1			_ •			•		
AOC	4BG12	0	07713	11:22	5	E										1				1		,		
Aloc	40612	04	17113	11:59	5	1				1								1		オ			······································	
		Г	7/13	1		Œ	••••			1			1	1	1		+	+	11.	十		`	 ,,	
	1.1 I I I	1 1	1	1			 	 			 	┝	+	┿	┿	1	+	+	┼┼			`		
	40613	10 5	7/13	13:15	5	<u> </u>		ļ					_	_	_	1		\bot		4_				
	40614					E				1									یا	1		`		
AOC	40614	09	7113	09:10	5	Œ				1						1	T			7		<u> </u>		
AOC	50601	00	7/13	1728	5	Œ				1						7	1	1		<i>T</i>		<u>, </u>		,
	50601					<u>E</u>				1			\top		1		1			+			•	
§	pecial instructions:							*	• • • • • • • • • • • • • • • • • • •			·				<u></u>			<u> </u>		T.	emperature	<u> </u>	°C
Lab: Rece	eived in Good Condi	tion?	Y or N	Describ	og Proble	ms, If an													-			mporature		
		~ 7	11/11		7		{																	

#1 Relinquished By: (Sig) #2 Relinquished By: (Sig) Date: #3 Relinquished By: (Sig) Date: Company Name: Time: Company Name: Time: Company Name: Time: #1 Received By: (Sig) Date: 7/14/00 #2 Received By: (Sig) Date: #3 Received By: (Sig) Date: Company Name: Time: 1700 Company Name: Time: Company Name: Time:

Note (1): If "N" lab will hold samples to await remainder of project-maximizing batch size and minimizing QC ratio; if "Y" lab will begin processing batches now. Note (2): Samples stored 60 days after date report mailed at no extra charge. Note (3): All lab copies of data destroyed after three years.

COMMUNICATION
COMPUCHEM
a division of Liberty Analytical Corp.

	1	
	OTANI	RECORD
ノローしょし	15 I CH 1Y	RECORD

lo 0011

a division of Liberty Analytical Corp.									Client Address :									Point-of-Contact :															
	a division of Liberty Analytical Corp.					BA	CKC	COUL		STUD	Y		aker			Ξ. Λ	ンジ				Jim Culp												
		0						;			arrier		<u>ED</u>	€,					_	ىن د				<u>az</u>		+							A
						3-509					irbill 1							RAOF	00	<u></u>	<u> 5.</u>	DI		151	38		ımn	lina	000	onloto?	1260	9-20	4 8 Note 1)
											ample	r Nam		VAR	1005			ler Sign				Ē.			<u>~ Q</u>	_	olec	t co	CON	npiete /	(Y or I	h (See	Note 1)
BOX #1					Wate				p Blan	k		BOX#	2 A. HCI	+ Ice	F. Ice C	Only		BOX#			iltere			Box	#4		High				C. CLF		
					Nate	er -		'. Oil						03 + Ice	G. Othe	er				U. U	Infilte	ered			•		Med		ľ	DUX #0	S. SW		T. TCL
				hate)			. Wa				C. NaOH + Ice H. NaHSO4 + Ice					_							1			Low	iiuiii				-040 VA 600-se	uta -
			Rins		Jina a .	m4 / 6		. Oth	ner					04 + Ice	I. ZnAc	+NaOH +	Ice	İ								•	,,				O. Oth		ries
		5, 6	3011 /	36	aimei	nt / S	ludge	3			······	L	E. Unp	reserved	*****			<u></u>													O. Oa	lei	·····
		_							2000			Box #1	Box #2			Box #5		U					2							PAG	·E_	9.0.	f 14
(9	cha			ple s m		muı	n)		Date:Year. Z		ime	Matrix	Preservative	Filtered / Unfiltered	Expected Conc.	Method	No. of Bottles	Use for Lab QC (MS or DUP)	A .	8	ticide	s bicide	als / Mercu	Cyanide	0&G / TPH		H O			Re		s / Com lotes 2	ments & 3)
A .	٦			Γ_		T		┿	··=	+			ــقـــا	<u> </u>	<u> </u>	<u> </u>	2	38	8	8	8 6	2 3	Met	8 3	2 8								
40	٠ ا		J i		1	- 1		- 1					<u>E</u>								\perp		~				1						
40										_			Œ				1						1		T	П	V					——————————————————————————————————————	
40	의	5	3	G	0	3	2 0	17	1//3	/3	:55	5	18				1								1		1	\dashv	\top				
40	<u>c</u>	5	B	4	0	3	20	17	1//3	13	:55	5	Œ	~~~.			1	Dup			\top			\top	†		7	\dashv	┪	Λ			······································
10													E				1	10			十	┪			+	H		\dashv	┽	D in	plice	· 7' ez.	
40										T			E				<u> </u>	1451 145 D	H	\dashv	+	+	4	┪	+-		4	+					
40													Œ				<u>,</u>	730	H	\dashv	+	+-	4		+-		-	-	+	845.	/M5	<u>D</u>	***************************************
40								•					1						H	\dashv	+	+-	7		+-	_	4		+			······································	-
40		7	7		7		20		113	1,	4-2	<u></u>							-	+	+		-		-		4	_	_		<u> </u>		
40		5	. 1		+	. 1	1			,		<u></u>	ريخ ا	<u> </u>			-!,		\vdash	+	- -	-	1			_	4		\perp				
lients :				ا ھا			13	17	<i> 3</i>	17	:4 4	<u> </u>	<u>E</u>		<u> </u>	l			Ц		\bot		レ		Ш	\perp	1		\perp	· · · · · · · · · · · · · · · · · · ·			
ab: Red	1						n2 1	· · ·	AI .	D-	. a a with a	Dockto																		Tem	peratu	ıre	°C
1 Relind							1	7	\mathcal{D} :	7	7		ms, if an	y: #2 Relind	ulahad O	· · · (01=)	· · · · · · · · · · · · · · · · · · ·			·	***************************************		-		·								
ompany						B.	K	Z	e		1	Time:	'	Company		y. (Sig)	Date							Date:									
1 Recei	/ed	Ву:	(Sig)		Ë			EX					#2 Recel		Sia)	Time: Company Name: Time: Date: #3 Received By: (Sig) Date:						· · · · · · · · · · · · · · · · · · ·										
ompany	Na	me:						,				lime:	7	Company		· 9/					ate; ime;			73 Rec								Date:	
									7						-									South	IIIY IYO	HIO.						Time:	

COMPUCHEM
COMITOCHEMI
a division of Liberty Analytical Corp.

CHAIL	N-OF-C	UŚTODY	RECORD
	1-01 -0	uaiuui	NEWNI

COMPUCHEM Project	4		· · · · · ·				 	•			
a distain aff thems Analytical Com-		Q CLET		Address			····	Point-of-Contact :			
504 Madison Avenue		VD STUDY		AKER		<u>~~.</u>	····	JIM	CULP		
Cary NC 27513		EX		O RO				Telephone N	10.: 412/269-2098		
1-800-833-5097 Airbill				RAOP		PA 1	5/08		omplete? Or N (see Note 1)		
		AMOUS	Sampl	er Signatu	ıre :′	E 31			ific (PS) or Batch (B) QC ?		
BOX #1 1. Surface Water 6. Trip Blank	BOX #2 A. HCI 4	lce F. Ice Only		BOX #3	F. Filtere	ed	Box #4	H. High	Box #5 C. CLP 3/90 T. TCLP		
2. Ground Water 7. Oil	B. HNO				U. Unfilt	ered	İ	M. Medium	S, SW-846		
3. Leachate 8. Waste	C. NaO	H + Ice H. NaHSO4	+ ice	1				L. Low	W. CWA 600-series		
4. Rinsate 9. Other	1	D4 + Ice I. ZnAc+NaC	OH + Ice						O. Other		
5, Soil / Sediment / Sludge	E. Unpre	eserved									
Sample ID (9 characters maximum)	Matrix Box #1 Box #2	/ Unfiltered	Method 44 Xo	Use for Lab QC (MS or DUP)	SVOC Pesticide	PCB Herbicide Wetals / Mercury	Cyanide TOC / TOX 0&G / TPH	T C	PAGE 10 of 14 Remarks / Comments (see Notes 2 & 3)		
AOC 5BG 1200711313:5	3 5 E		١			- L					
AOC5BG1204711314:04	5 €	tagen.	1			<u> </u>					
AOC5BG120471131404	15 E		1	040					Duplinge		
AOC 5 BG 1 204711314:04	5 6		_\	DUD ME/ MED				1	MS/13.1D		
AOC 5BG 13007113 13:20	5 6		1			-					
A OC 5 BG1 3057113 13:33	-5 €	•••				1					
AOC5BG1400711312:12											
AOC5BG1403711312:33		_	Ì			- I					
AOC5BG1600711312:43	25 =										
AOC5 BG 1664 7113 13:03	1 1	_									
Clients Special Instructions:				J			<u> </u>		Temperature °C		
Lab: Received in Good Condition? Y or N Descri	be Problems, if an	v:				- /		······································	· omporature		
#1 Relinquished By: (Sig) F.A. Klaid	, ,	#2 Relinquished By: (S	Sig)		Date);	#3 Relinguis	shed By: (Sig)	Date:		
Company Name: SAKER (Time: /700	Company Name:			Time		Company N		Time:		
#1 Received By: (Sig) FGD EX	Date: 7/14/00	#2 Received By: (Sig)			Date	:	#3 Received	l By: (Sig)	Date:		
Company Name:	Time: 1709	Company Name:	· · · · · · · · · · · · · · · · · · ·		. Time	9;	Company N	ame:	Time:		

	COMPUCHEM a division of Liberty Analytical Corn
	a division of Liberty Analytical Corp.

CLIAIN	OF Chie	TODY	DECODO
CHAIN-	ひと-しひる	HUUY	RECORD

Project Name: MCB CLET **Client Address:** Point-of-Contact: STUDY CULE BACKGROUND BAKER Jian 501 Madison Avenue Telephone No.: 412/269-2098 ROUSER Carrier: 420 Cary, NC 27513 CORADPOLIS 15/08 Sampling complete? (Yor N (see Note 1) Airbill No.: 1-800-833-5097 Sampler Signature : JIK JIK Project-specific (PS) or Batch (B) QC? Sampler Name: MRICUS T. TCLP **BOX #3** F. Filtered Box #4 H. High Box #5 C. CLP 3/90 BOX #2 A. HCI + Ice F. Ice Only **BOX #1** 1. Surface Water 6. Trip Blank S. SW-846 7. Oil B. HNO3 + Ice G. Other U. Unfiltered M. Medium 2. Ground Water W. CWA 600-series 8. Waste C. NaOH + Ice H. NaHSO4 + Ice L. Low 3. Leachate O. Other_ D. H2SO4 + Ice I. ZnAc+NaOH + Ice 9. Other 4, Rinsate 5. Soil / Sediment / Sludge E. Unpreserved Box #2 Box #3 Box #4 Box #5 Box #1 PAGE 11. of 14 2000 Filtered / Unfiltered Use for Lab QC (MS or DUP) Metals / Mercury Expected Conc. Remarks / Comments" Vo. of Bottles Sample ID Preservative TOC / TOX 78G / TPH I Herbicide (see Notes 2 & 3) Pesticide (9 characters maximum) 0 svoc VO V 80g 0 60 یخ 50 7/13/19/6 4 يح 8 Duplicate Du Temperature Clients Special Instructions: Describe Problems, If any: Lab: Received in Good Condition? Y or N #3 Relinquished By: (Sig) #2 Relinquished By: (Sig) Date: Date: Date: 7/H/00 #1 Relinguished By: (Sig) Company Name: Time: Company Name: Time: Time: Company Name: #3 Received By: (Sig) Date: 7/14/00 #2 Received By: (Sig) Date: Date: #1 Received By: (Sig) Time: Time: Time: 1700 Company Name: Company Name: Company Name:

COMPUCHEM
a division of Liberty Analytical Corp.

			RECORD
CLIAIR	4 / NE / YI	IETARV	BEMODIN
1.74		131111	75
	1-Oi -Oi	JU 1 U 1	

No.

<u>, 'wwim</u>

COMPUCAL	1, 10,000	Name: MC	Q Cr.	= 1		Addres							Poi	nt-of	-Conf	act:	
a division of Liberty Analytical Co	I DALKGROUND STUDY I DAKER ENVIRON.												10	41	CULP		
501 Madison Avenue	Carrier	: FEI	EX		42				e /							0.: 412/269-2098	
Cary, NC 27513 1-800-833-5097	Airbill N	lo. :			5							32				mplete? (Y or N (see Note	e 1)
1-000-033-0037	Sample	r Name :	VARI	OUS		ler Signa		1	ل عر		3					fic (PS) or Batch (B) QC ? _	
BOX #1 1. Surface Water 6. Tr	rip Blank	BOX #2 A. HCI		. Ice Only		BOX #3	Additional value of the con-	Filter			Box#		Н. Н				TCLP
2. Ground Water 7. O	1	B. HN	O3 + ice G	6. Other			U.	Unfill	tered				M. N	/lediu	m	S. SW-846	
3. Leachate 8. W	/aste	C. Na	OH + Ice H	I. NaHSO4 + Ice)					l			L. Lo	w		W. CWA 600-series	
4. Rinsate 9. O	ther	D. H25	SO4 + Ice I.	ZnAc+NaOH +	lce					Ì						O. Other	
5. Soll / Sediment / Sludge		E. Unp	reserved			<u> </u>			-					**********			
Sample ID (9 characters maximum)	Date:Year. 2000	Matrix xog	Filtered / Unfiltered 88 x8	Expected Conc. Page 184 x og Wethod	No. of Bottles	Use for Lab QC (MS or DUP)	/OA	esticide	PCB terbicide	Metals / Mercury	Cyanide TOC / TOX	3&G / TPH		T a		PACE/Z of Remarks / Commer (see Notes 2 & 3)	nts
A 0 C 6 0 G 0 9 0 4	and the second s	Control of the last of the las			1					7					1	4.04.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	
A 0 C 6 B G 1 0 0 0			-		1					J			П				
A 0 C 6 B 6 1 0 0 6					1					1			П		1		
A0C6860400	i	1 1			1			1				†	H		1		
	1							T			-	1-	H	+	+		
AOC666604??	1		++			 		-		+	_	-	H	4	╁		
4006880200		1 1 .					-	-		13		+-	$\left - \right $	4	-		
4006660209	7/14/10:00	1			/			-					\sqcup	4	_		_
A O C 6/0 G 0 3 0 9	7/14/11:18	5 6	>							1		_		<u> </u>			
A 0 C 6 B G 0 3 0 0	7/14/10:30	5 6			1					1				V			
A0 C6 B G0 100	7/14 07:55	5 6	1 - 1		1					V				V			
Clients Special Instructions:																Temperature	_°C
Lab: Received in Good Condition? Y	or N Descri	be Problems, if	any:														
#1 Relinquished By: (Sig)	Klein uf	Date: 7/14/00	#2 Relinqu	ılshed By: (Sig)				Dat	le:		#3 Re	linqui	shed	Ву: (Sig)	Date;	
Company Name: BAKE	k !	Time: 1700	Company	Name:				Tin	ne:		Comp	any N	lame			Time:	
#1 Received By: (Sig) /ニミカ	EX	Date: 7/4/6	#2 Receive	ed By: (Sig)			•	Da	te:		#3 Re	celve	d By:	(Slg)	······································	Date:	
Company Name:		Time: 1700	Company	Name:			Tin	ne:		Comp	any N	lame	:		Time:		

CHAIN	OF C.	-STARV	RECORD
CHAIN:	・レド・しし	JSTUUY	RECURD

### Advision of Long. ### Soft Madison Avenue Carry, NC 27513 1-800-833-5007 ### BOX #1 1. Surface Water 6. Fire Blank 2. Ground Water 7. Oil 3. Leachate 8. Waste C. NoOH+ Ice H. NaHSO4+ Ice 4. Rinsate 9. Other 5. Soil / Sedment / Sludge ### BOX #1 80x #2 Met 1-1. NaHSO4+ Ice 5. Soil / Sedment / Sludge ### BOX #1 80x #2 BOX #3 Fire Received in Qo C 7 A G O 1 O 0 7 / H Ph 3: 31 S E	COMPUCHE		Project	Name :	MC	BC	しゅゴ	-	Client	Addres	ss:							Poi	nt-of-	Conf	act :	the state of the s
Sun Meadson Avenue Cary, NC 27513 1-800-835-6997 1-	· ·	Corp.	BA	CKG	ROU	DIN	Stu	الاحد	BA	AKER	2	ت	W	1/12	UA.) .					_	
A C C C C C C C C C		C																Tele	epho	ne No	D.: 412/269-	2098
Sample ID Samp		Ā	Airbill N														R					
South Surface Water Surface		S	Sample	r Name	: v	ARIO	US									<u> </u>						
2. Ground Water 7. OI 3. Isechable 8. Waste 1. Shadar 1. C. No. Office 1. Shadar 1. C. No. Office 1. Shadar 1. C. No. Office 1. ZhAc+NaCH+ Ice 1. ZhAc+NaCH+	BOX #1 1. Surface Water 6.	Trip Blank		BOX #2				nly	<u> </u>				red			ox #4				*********	and the second s	
A. Rinsale 9. Other D. H2SO4 + Ice 1. ZnAc+NaOH + Ice E. Unpreserved E. Soil / Sediment / Sludge D. Down St. Sci. Sci. Sci. Sci. Sci. Sci. Sci. Sci	2. Ground Water 7.	Oli			B. HNO	3 + Ice	G. Other	Γ		1	1	U. Unf	ittered	i					-			•
Sample ID (9 characters maximum) (10 characters maximum) (10 character	3. Leachate 8.	Waste			C. NaO	H + Ice	H. NaHS	SO4 + Ice	•	1								L. Lo	w			
Sample ID (9 characters maximum) (9 characters maxim	4. Rinsate 9.	Other					I. ZnAc4	NaOH +	Ice												O. Other_	
Sample ID (9 characters maximum) (10 characters maximum) (10 characte	5. Soll / Sediment / Sludge				E. Unpr	eserved				<u>]</u>		····										
Sample ID		21		Box #1	Box #2		Box #4	Box #5					Π			Τ					PAGE 1	3 of 14
A O C 6 B G C C C C C C C C C	Sample ID	707			l ø	nfiltere	Onc.		8	200					roury		,					-
A O C 6 B G C C C C C C C C C	•	l g			ati	2	8		₩	<u> </u>		يو		اع	<u>Σ</u>	ĮŠ	ᇤ					
A O C 6 B G C C C C C C C C C	•	ie K	ည	trix	Ser	erec	T T	Pod Bod	ğ	125	4	႘န္တ	6	Dici	als /	5	5		4		(300 11010	,3 Z & 3)
A O C G B G O I O G 7/14 D8:31 S E		Š	트	Ma	F.	E.	<u>a</u>	Š	ટ્ર	38	8	S 8	S S	He.	§ 2 €	ŠĎ	8					
# Received By: (Sig)	1006860100	7/140	7:55	5	Œ				1	DUP									V		DUPLICAT	- ز
A O C S B G I 1 O O 7/14 08:31 5 E	A0C6BG0106	7/14 b	8:31	_ ک	E										_				4			
A O C 5 B G 1 7 0 0 7/H 08:07 5 E	A006390106	7/140	გ: კ.	5-	E					MS/M	2			,	1				7		MS/MSD	
A O C 7 B G J G O O 7/14 U8/5L 5 E — J J J J J J J J J J J J J J J J J J	A005BG1700	7/4 0	8:07	5-	E														4		/	
A O C 7 B G 1 6 0 6 7/14 U%56 5 E — 1	AOC 5 B 6, 1 7 0 3	7/140	18:21	5	E				1					,					V			
A o C 7 3 G O 5 O 4 7/14 R: 16 5 E -	A007BG1600	7/14	18:40	5-	E														1			
A O C 7 B G O 5 O 6 7/14 1 1:51 5	AOC 786 1606	714	18:5L	5	Œ										1				7			
A O C 7 B G O 5 O 6 7/14 1 1:51 5	A007360504	7/14	<u>ا۔:ال</u>	5	E				l						1				7			
Clients Special Instructions: Lab: Received in Good Condition? Y or N Describe Problems, If any: #1 Relinquished By: (Sig)	A007360500	7/14	1:51	5-	تي										V				1			
Lab: Received in Good Condition? Y or N Describe Problems, If any: #1 Relinquished By: (Sig)	AOC7A60300	7/14/1	0 :45	5	ت														1			
Lab: Received in Good Condition? Y or N Describe Problems, If any: #1 Relinquished By: (Sig)	Clients Special Instructions:								•												Temperature	°C
Company Name: Time: 1700 Company Name: Time: Company Name: Time: Time: #1 Received By: (Sig) Date: #3 Received By: (Sig) Date:	Lab: Received in Good Condition?	Y or N	Describ	e Proble	ms, If ar	y:										************						
#1 Received By: (Sig) /- (= 1) (= X Date: 7/14/00 #2 Received By: (Sig) Date: #3 Received By: (Sig) Date:	#1 Relinquished By: (SIg)	Blick		Date: 7	14/00	#2 Relin	quished E	By: (Slg)	-			Da	ite:		#:	3 Reli	nquis	hed	By: (S	ig)		Date;
	Company Name: AAK			Time:	1700	Compan	y Name:		·····			Tit	ne:		С	ompa	ny N	ame:				Time:
Company Name: Time: 1700 Company Name: Time: Company Name: Time:	#1 Received By: (Sig) /- = T	EX		Date: 7	114/00	#2 Rece	lved By: ((Sig)				Da	ite:		#:	3 Rec	elved	Ву:	(Sig)		***	Date:
	Company Name:		**********	Time:	1700	Compan	y Name:		Time: Company Name: Time:									Time:				

Note (1): If "N" lab will hold samples to await remainder of project-maximizing batch size and minimizing QC ratio; if "Y" lab will begin processing batches now. Note (2): Samples stored 60 days after date report mailed at no extra charge.

a division of Liberty Analytical Corp.

1. Surface Water

2. Ground Water

3. Leachate

4. Rinsate

BOX #1

501 Madison Avenue Cary, NC 27513 1-800-833-5097

5. Soil / Sediment / Sludge

7. Oil

8. Waste

9. Other

E. Unpreserved

CHAIN	0E 0.	ÉTAN	Y RECORD
CHAIN-	ひに-しに	עט ו פנ	IREGURD

No.

Jin

Project Name: MCA CUE 35 Client Address : Point-of-Contact: BACKGROUND BAKER 11116 OKZ Carrier: ROAD KOUSER Telephone No.: 412/269-2098 Airbill No. : CORADPOLIS PA 15/08 Sampling complete? (Y or N (see Note 1) Sampler Name: Sampler Signature: UMKIOUS C 7/C Project-specific (PS) or Batch (B) QC? 6. Trip Blank BOX #2 A. HCI + Ice F. Ice Only **BOX #3** F. Filtered Box #4 H. High Box #5 C. CLP 3/90 T. TCLP B. HNO3 + Ice G. Other_ U. Unfiltered M. Medium S. SW-846 C. NaOH + Ice H. NaHSO4 + Ice L. Low W. CWA 600-series D. H2SO4 + Ice I. ZnAc+NaOH + Ice O. Other

	(9	cha		amı			imu	ım)		Date:Year: 2000		Time	Matrix Natrix	Preservative xox	Filtered / Unfiltered × X	Expected Conc. xog	Method xet	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	svoc	Pesticide	PCB	Herbicide Metals / Mercury	Cyanide	TOC / TOX	O&G / TPH		DI	-	PAGE 14 of 14 Remarks / Comments (see Notes 2 & 3)
A	O	ے	7	B	G	o	3	۵	5	7/10	FLI	:03	5	E				(<i>-</i>					~		
A	6	J	[-	B	G	0	2.	0	0	7/14	10	1:05	5	تے	Mayor P			1					T	-							
A	0	0	7	B	G	0	2.	0	2	7114	+ 10	5:15	5	سى	•••			1						1					V		×
A	0	C	7	B	G	0	2	0	2	7/14	F 10):15	5	<u></u>	}			1	DUF					-	1				J		DUPLICATE
A	0	1 1		l		i	1	1	l i	7114	- 1	i i		ت				-						~					7		
A	0	C	7	B	G	0	4	O	0	7114	F 11	:17	5	E	Ì									V							
A	0	C	7	B	G	0	1	0	٥	7114	- 00	1:10	5	ت				-							1		•		7		
A	0	C	7	1		ı	•			7/14	- 1	1		ي				-						-					J		
A	0	0				#Z=	712 E	CE 1/2	****	*71	346	September	3	2	200 See an arrange brown angent to design the second	SEXTREM	***************************************					ijan.	****			- Rous			10	*****	 - 54 7/14/00
4	1	4	-	1	á		l	1		24				-6=		iga er est	C. LONGING COMM	20 ST 17 12 12 12 12 12 12 12 12 12 12 12 12 12	garger 25	165	incarbs.	5786-CO 1	i de la constitución de la const	. Y						-	· ETI 7/14/00
CII	ents	Spe	ecia	Ins	truc	tior	18:						1,4															t			 Temperature °C

Lab: Received in Good Condition? Y gr N Describe Problems, If any: Date: 7/14/00 #1 Relinquished By: (Sig) #2 Relinquished By: (Sig) Date: #3 Reiinquished By: (Sig) Date: BAKER Company Name: Time: 1700 Company Name: Time: Company Name: Time: Date: #2 Received By: (Sig) #1 Received By: (Sig) Date: #3 Received By: (Sig) Date: Time: Company Name: Company Name: Time: Company Name: Time:

 <i>J</i>
COMPUCHEM
COMPUCHEM
a division of Liberty Analytical Corp.
• • • • • •

CHAIN	OF O	ÓTADN	/ DECODD	
CHAIN		USTOUT	Y RECORD	

U U 1 4

	a division of Liberty Analytical Corp.												Addre								Po			ntact:	_						
a o		Mac	•		•		ıp.					ND		<u> </u>		<u>1651</u>			****	レ.				<u> </u>			1				
		oviac Cary,							rrier		ÉD.	EX	······································		4-2			US.				AJ							69-2		
		-800							bill N					····		(AOI			5,	PK	1 /	5/6	8	Sa	mpli	ng c	omplete	<u> </u>	r N (see No	ote 1)
									mple	r Name		VAR	(0U 5		Sampl	er Signa				65			-	Pro	oject	-spec	ific (PS) or Ba	atch (B)	QC?)
BOX #1	1. Su						ip Blan	k		BOX #2	A. HCI 4		F. Ice O	•		BOX #3	3	F. Fil			1	Box #	4	H. I	High		Box#	5 C. C	CLP 3/90		T. TCLP
	2. Gr			r		. Oil					B. HNO		G. Othe					D-0	nfilter	ed	:			M. i	Medi	ım		S. S	W-846		
		achat	e				aste							SO4 + lo							- 1			L. L	.ow				CWA 600	J-serie:	s
	4. RI		مسالم	-4 / C			her						I. ZnAc	+NaOH +	ice	}					- 1							0.	Other		-
	5. Sc	II / SE	aime	nt/S	luagi	-					E. Unpr					1															
(9 ch		mple ers r		imur	n)		Date:Year. 2000		Тіте	Matrix xoB	Preservative 80x #2	Filtered / Unfiltered ox *3	Expected Conc. og	Box #5	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	svoc	Pesticide	Herbicide	Metals / Mercury	Cyanide TOC / TOX	O&G/TPH		ЬH	•	1	Remai		omm	ents 3)
BAS	E	3G	0	2	0	2	7/1:	3 07	:40	5	E	-									/				7						
BAS	6	36	0	2	اد	3	7/1	300	2:03	5	ϵ	-			1						-				1						
BAS	6	BG	2.	9	0	> -	フ/県	15	:00	5	E	-			1						J				1						
BAS		\neg	T					1		4	ϵ	***********									J				7						
CAS						Т		T-		~	E		1						十		J		1		7	1		********			
BAS	T	$\neg \vdash$	T							5	Œ	-					T		\top				1		1	7					
BAS	T		1			Т					Œ						 		\top	†			T	T		\top					-
BAS	T		Т	П				1		5	۳				1		T	П	\top	1	J	\top	T			\top					. مست برزن
645	T . I	1	Т	П	T					5	(=				1	<u> </u>					7	1	T			_					
4			;4	П	\neg	\neg	7/12			5	E	-			1				\top	1	J	1	1								
Clients Sp					<u> </u>			2II				<u> </u>					<u></u>				ł l				LL		T	empe	rature		°C
Lab: Rece	ived i	n God	od Co	onditi	lon?	, Y	or N	D	eșcriț	e Proble	ems, If ar	1y:																			
#1 Relinqu	shed	By: (S	ilg)	يحر		/	S.P.	أسف		Date: 7	111/00	#2 Rellr	nquished	By: (Sig)					Date:			#3 Re	linqu	shec	I By:	(Sig)				Date:	
Company I				02	K	ر ي	<u>k</u>		/	Time:	(700	Compar	ny Name:						Time:			Comp	any l	lame):					Time:	
#1 Receive	ed By:	(Sig)	/	ي سر		, ($=$ \times			Date: -	1/19/00	#2 Rece	eived By:	(Sig)					Date:			#3 Re	celve	d By	: (Sig)				Date:	
Company I	Name:									Time:	1700	Compar	ny Name:			-			Time:		·	Comp	any l	lame) :					Time:	

CHAIN-OF-C	STODY RECORD
------------	--------------

o. • • • • •

م ما المالية	.61.1		4=0	1	-1.0		- 1	_		MC	•			Cilent	Addres	55 .							_					act:					.,,
a division		-				orp.	L	131	CKG	ROU	ND	<u> 57 uz</u>	<u>> Y</u>	BA	KER	E	<u> </u>	UR	DN	MG	EN.	TA	4		<u>J7.</u>	M	<u> </u>	JUP					
	Mad ary,				9			Carrier	FE	DE	<u> </u>				O RO									Tel	eph	one	No	.: 4	12/2	96	-20	98	
	.800						1	Airbill N	lo.: 8	1802	832	7012	•	Cox	MON	oc.	15	E	A	15	10	P		Sar	npli	ng	col	mplete	<u>2(Y)</u>		(see	Note	1)
							!	Sample	r Name	: <i>U</i>	AR10	<u>دں د</u>		Sampl	er Signa	ature):		ΕJ	-1 <								ic (PS)					
BOX #1 1. Sur	face	Wate	r	1	6. T	rip Bla	ınk		BOX #2	A. HCI	lce	F. Ice O	nly		BOX #3	Ι,	F. Fi	tere	d		Box	(#4		H. H	ligh			Box #5	C.	CLP 3	/90	Т. Т	TCLP
2. Gro	ound '	Vate	r		7. 0	ii				B. HNO	3 + Ice	G. Othe	r	······			U. U	nfilte	ered					M. N	/ledi	um	Ì		S.	SW-84	16		
3. Lea		•				Vaste						H. NaH		_							İ		1	L. Lo	WC						600-se	ries	
4. Rin						ther						I. ZnAc	NaOH +	Ice					•										Ο.	. Other			
5. Sol	I / Se	dimer	nt / S	Sludg	je					E. Unpr	eserved				<u> </u>						<u> </u>					*****							
San (9 characte	•		mu	m)		Date:Year. 2000		Time	Matrix Matrix	Preservative of	Bitered / Unfittered was	Expected Conc. sog	Box #5	Vo. of Bottles	Use for Lab QC (MS or DUP)	/OA	svoc	esticide	ocB Jerbicide	Aetals / Mercury	yanide	TOC / TOX	3&G / TPH			·	i		tema	arks /	Com tes 2	men	
AOCIO	3 G	0	ı	0	٥			13:50		E				1					<u>u </u>	1			Ĭ	1	1						**************************************		
AOCIE	1	1 1			- 1		- 1		ł	تع				1						0											······································		***************************************
4 OC 14	1	1 1		1	ı		- I		i	E				1																			
AOCIC					1	ĺ	· ·		1	Ē				1						1./			\exists					i	-				
AOCIA		T							1	E	-			,				\top	+				\neg		\dashv					<u>,</u>			
	1	1 1		1 1					l .	E	<u> </u>			,				\dashv	\dashv	1			\dashv		-				,				
AOCIA	\neg								1			 		 	-		$\mid \rightarrow \mid$	\dashv	_	1			\dashv	-	-			<u> </u>	·······				
A OC 10										E	-	 		 	 	\vdash	H	+	+	1	-	\dashv	\dashv	-	\dashv	_		 					-
AOCIL									1	E		 	-	1	 -	-	\vdash	\dashv	+	V	-		-					·					
AOCIA	3 G	0	5	0	0	07/1	4	0:15	5	تے		 		1	-		\vdash	4		V	1_		_							******			
AOCII	3 6	0	5	0	2.	07/	<u>U</u>	10:23	5	=		<u> </u>			<u></u>			\perp		V	<u></u>			$_ \bot$									
Clients Special I	nstru	ction	15:								·																	Te	empe	eratu	re		°C
Lab: Received in	God	d Co	ndi	tion	? Y	or N		Descri	be Probl	ems, if ar	ıy:																						
#1 Relinquished E	ly: (S	g) <u>/</u>	جي منس	1.	K	bi	_/_	-	Date: 7	/12/00	#2 Relin	quished I	By: (Sig)					Date	:		#3	Relin	quis	hed	Ву:	(Sig))				Dat	e:	
Company Name:		B	Ä	K	<u> </u>	<u>e</u>		<u>U</u>	Time:	700	Compar	ny Name:	·····					Time	e:		Cor	npan	y Na	ame:	:						Tim	e:	
#1 Received By: (Sig)	E	32	2_(=	<u>X</u>				12/00	T		(SIg)					Date) ;		#3	Rece	lved	Ву:	(SIg)					Dat	e:	
Company Name:									Time:	1700	Compar	ny Name:		Time: Com									y Na	ame:	:			*****			Tim	e:	

COMPUCHEM
a division of Liberty Analytical Corp.

CHAIN-	OF-CL	ISTODY	RECORD

No. 4 4.0 1 4

Project Name: MCB CLEJ Client Address: Point-of-Contact: BACKGROUND STUDY ENVIRON. Jim CULP BAKER 501 Madison Avenue Telephone No.: 412/269 - 2098 Carrier: FeD EX 420 ROUSER ROAD Cary, NC 27513 Airbill No.: 8/8028327012 CORAOPOLIS PA 15/08 Sampling complete? Yor N (see Note 1) 1-800-833-5097 Sampler Name: Sampler Signature: Project-specific (PS) or Batch (B) QC? VARIOUS EJK **BOX #1** 1. Surface Water 6. Trip Blank BOX #2 A, HCI + Ice F. Ice Only **BOX #3** F. Filtered Box #4 H. High Box #5 C. CLP 3/90 T. TCLP 2. Ground Water 7. OII B. HNO3 + Ice G. Other U. Unfiltered M. Medium S. SW-846 8. Waste C. NaOH + Ice H. NaHSO4 + Ice 3. Leachate L. Low W. CWA 600-series 4. Rinsate 9, Other D. H2SO4 + Ice I. ZnAc+NaOH + Ice O. Other_ 5. Soil / Sediment / Sludge E. Unpreserved Box #2 Box #4 Box #5 Box #1 Box #3 PAGE 2 of 11 000 Filtered / Unfiltered Metals / Mercury ဗ္ဗ Expected Conc. N Sample ID lo. of Bottles for Lab C or DUP) Remarks / Comments roc / Tox Date: Year. Herbicide (9 characters maximum) Pesticide (see Notes 2 & 3) Use for I (MS or E SVOC Matrix ğ E 600 7/11/09:00 60604711109:15 16/0/7/0/0/7/11/13:27 E 04 E 800 7/11 E ... 6080Z 7/11/13:10 E 9007/11/12:20 E *** 1901 7/11/12:30 0 7/11/20:10 0 DUPLICATE **Clients Special Instructions:** Temperature Lab: Received in Good Condition? Yor, N Describe Problems, if any: Date: 7/1 2/60 #2 Relinquished By: (Sig) Date: #1 Relinguished By; (Sig) #3 Relinquished By: (Sig) Date: Time: /7 00 Company Name: Time: Company Name: Company Name: Time: Date: 7/12 #2 Received By: (Sig) Date: #1 Received By: (Sig) #3 Received By: (Sig) Date: Time: 1700 Company Name: Time: Company Name: Company Name: Time:

<i></i>
COMMENTAL
COMPUCHEM
a division of Liberty Analytical Corp.

		8	
			RECORD
I LANINI.	_/ 11 / 11		DEMON
	-		

Project	tName: MC & CLEJ	Client Address :	Point-of-Cont	act:
a division of Liberty Analytical Corp.	CKGROUND STUD		LENTAL JIM	CULP
501 Madison Avenue Carrie		420 ROUSER ROA		0.: 412/269-2098
1-800-833-5097 Airbill	No.: 81802832701	CORMOPOLIS, NA	15108 Sampling co	mplete?(Y)or N (see Note 1)
	ler Name: VARIOUS	Sampler Signature: ' とす!	< Project-specif	fic (PS) or Batch (B) QC ?
3OX #1 1. Surface Water 6. Trip Blank	BOX #2 A. HCI + Ice F. Ice Only		Box #4 H. High	Box #5 C. CLP 3/90 T. TCLP
2. Ground Water 7, Oil	B. HNO3 + Ice G. Other_	U. Unfiltered	M. Medium	S. SW-846
3. Leachate 8. Waste 4. Rinsate 9. Other	C. NaOH + Ice H. NaHSO	1	L. Low	W. CWA 600-series
4. Rinsate 9. Other 5. Soil / Sediment / Sludge	D. H2SO4 + Ice I. ZnAc+Ni E. Unpreserved	IOH + ICE		O. Other
o. doir/ dealinent/ diauge				
Sample ID Oate: Year 7 000 6	Matrix xog Preservative x xog Filtered / Unfiltered xog Expected Conc. xog	Method \$9 No. of Bottles Use for Lab QC (MS or DUP) VOA SVOC Pesticide PCB Herbicide	Cyanide TOC / TOX O&G / TPH	PAGE 3 of 11 Remarks / Comments (see Notes 2 & 3)
9 0 C 1 B G 1 0 0 1 7/11 20:15	5 E -			l
90018610017/1120:10	55E-	1 DUP V		DURLICATE
10C19G10017/1120:19	5 E -	1 MS/MST V		MS/MSD
AOC18611007/1109:41	05 = -			,
40C1BG11027/1109:4:	5 5 E -			
A O C 1 B G 1 2 0 0 7/11 10:59	5 E -			
40 C1 AG12 007/11/0:5	55 E -	1 DUP V		DURICATE
AOCIBG12007/11 10:5	5 5 E -	1 MS/MSD V		MS/MSD
4001 8612027/11 11:09	55E-			
40018613007/11/3:0				
Clients Special Instructions:			 	Temperature °C
Lab: Received in Good Condition? YouN Descr	ibe Problems, if any:			
#1 Relinquished By: (Sig) F. Klimby	Date: 7/12/0/ #2 Relinquished By:	(Sig) Date:	#3 Relinquished By: (Sig)	Date:
Company Name: BAKER	Time: 1760 Company Name:	Time:	Company Name:	Time:
#1 Received By: (Sig) FED EX	Date: 7/12/0/ #2 Received By: (Signature)) Date:	#3 Received By: (Sig)	Date:
Company Name:	Time: (7 60 Company Name:	Time:	Company Name:	Time:

Company Name:

CHAIN-OF-	CUSTODY RECORD	No.
A CLET	Client Address :	

Time:

Company Name:

Time:

Project Name: Mc& C Point-of-Contact: BACKGROUND STUDY ENVIRONMENTAL JIM CULP 501 Madison Avenue Carrier: FED EX 420 ROUSER Telephone No.: 412/269 - 2098 Cary, NC 27513 Airbill No. : P18028327012 CORMODOLIS PA 1-800-833-5097 15108 Sampling complete?(Y)or N (see Note 1) Sampler Name: VARIOUS Sampler Signature: **与** よび K Project-specific (PS) or Batch (B) QC? **BOX #1** 1. Surface Water 6. Trip Blank BOX #2 A. HCI + Ice F. Ice Only **BOX #3** F. Filtered Box #4 H. High Box #5 C. CLP 3/90 T. TCLP 2. Ground Water 7. Oil B. HNO3 + Ice G. Other U. Unfiltered M. Medlum S. SW-846 3. Leachate 8. Waste C. NaOH + Ice H. NaHSO4 + Ice L. Low W. CWA 600-series 4. Rinsate 9. Other D. H2SO4 + Ice I. ZnAc+NaOH + Ice O. Other_ 5. Soil / Sediment / Sludge E. Unpreserved Box #1 | Box #2 | Box #3 | Box #4 | Box #5 PAGE 4 of 11 2002 Filtered / Unfiltered Expected Conc. Metals / Mercury Sample ID r Lab Q DUP) of Bottles Preservative Remarks / Comments Date: Year. OC / TOX (9 characters maximum) Pesticide **Herbicide** (see Notes 2 & 3) Method Use for (MS or [Matrix SVOC PCB 01 7/11 13:05 4007/11 5 Œ (0:40 سمين E 7/11/10:45 5007/11/11:09 یے 3 7/11 11:20 ی 1 00 7 / 11 1/8:45 E 7/11/18:55 E 0 E 602007/11/18:10 E 2007/11/18:10 0 Top DUPLICATE Clients Special Instructions: Temperature Lab: Received in Good Condition? Y or N Describe Problems, If any: #1 Relinquished By: (Sig) 00 #2 Relinquished By: (Sig) Date: #3 Relinquished By: (Sig) Date: Company Name: Time: 1700 Company Name: Time: Company Name: Time: 7/12/00 #2 Received By: (Sig) #1 Received By: (Sig) Date: #3 Received By: (Sig) Date:

Note (1): If "N" lab will hold samples to await remainder of project-maximizing batch size and minimizing QC ratio; if "Y" lab will begin processing batches now. Note (2): Samples stored 60 days after date report mailed at no extra charge. Note (3): All lab copies of data destroyed after three years.

Time: (700 Company Name:

		,			
CHAIN	. ^-	A A **	~~\	~~~	~ ~ ~
	M_(I)		/ 11 1 V		14/11
VIIAII	4-V: -		$\omega \omega$		JIND

									Project	Name:	MCK	a c	Lej		Client	Addre	ss:							\neg	Poi	nt-o	f-Co	nta	ct:	
a .								Corp.	BACKGROUND STUDY BAKER ENURDNMENTAL															しして						
	5					/ent	ıe			ن - :					42	20 K	, 0 t	25.6	= K		R								: 412/269-209	8
			ary, 800			513 197				lo.: e				12		RADI				PA			OE						plete? Øor N (see Not	
										r Name		IARI				er Signa			,		JK								(PS) or Batch (B) QC ?	
OX #1	1.	Sur	face	Wat	er		6. 1	rip Blank		BOX #2			F, ice O	nly		BOX #3	_	F. Fil	tered			Box	#4		H. F					TCLP
	2.	Gro	und	Wat	er		7. 0	Oil			B. HNO	3 + Ice	G. Olhe	r				U. U	nfilter	ed					M. N	/ledi	um		S. SW-846	
	3.	Lea	chat	е			8. V	Naste			C. NaO	H + Ice	H. NaH	SO4 + Ice	9										L. Le	ow			W. CWA 600-series	
	4.	Rin	sate				9. 0	Other			D. H2S	04 + Ice	I. ZnAc	+NaOH +	Ice														O. Other	
·	5.	Soil	/ Se	dim	ent /	Slud	lge	******************		<u>L</u>	E. Unpr	eserved				<u></u>									······································			\perp		
										Box#1	Box #2	Box #3	Box #4	Box #5	Ι	T		П	T	Т	П		⁻ T		Т	T	Т	Т	S. C	1,
								0				8													ı			-	PAGE 5 of	11
	_							2000				lite	5		ي ا	8 _					ğ				ļ	1				
(O = b			ple					1	Ì		tive	5	ပ္သိ		of Bottles	d P				١.,	Ver		×۱	ᇍ				ı	Remarks / Commer	
(9 ch	ara	icte	rs r	nax	am	um)		, , , ,		<u> </u>	E S	8) by	8	P. O	o for L		ا ي	ğ	çig	S	g g	Ĕ		İ	ł			(see Notes 2 & 3))
	(9 characters maximum)								i ii	Matrix	Preservative	Filtered / Unfiltered	Expected Conc.	Method	ğ	Use for Lab QC (MS or DUP)	Q	svoc		章	Metals / Mercury	'ar	TOC/TOX	8	- 1	ı				
	Τ.	T	T	Τ	T_	T	Γ.	1					 		```			<u>"</u>		1#	1		旪	4	7	7	-	十	V	
	Т	Т	7	T	T	T		1	20:09	I	E			ļ	 	 	-	\vdash		-	1					-	-+	-		
400	12	1	G	0	3	0	0	7/11	20:09	5	E		<u> </u>	ļ	1	DUP	L				1			_			\perp		DUPLICATE	
40c	. 7	20	3/6	0	3	0	3	7/11	20:25	5	E				1										-					
400	7		ي الا	: /	14	6	0	7/11	19:10	~	ت	_						П			J									
1 1	1	- 1						1	19:45	1	E								_	+			7	7	7	\dashv	寸	\dashv		
								I .	1	1			 			 	╁╾	╂┼	\dashv	十	۲		┯┼	\dashv	\dashv	-	\dashv	+		
	_	T	7	7	\top	7	1		17:15	1	E		 	ļ		ļ	<u> </u>	\vdash	-	_	10		_	-	_	_	_	_	***************************************	
4 0 c	2	4	3 G	<u>; c</u>	25	0	2	7/11	17:25	5	E		ļ	<u> </u>		<u> </u>					1									
100	: 2	2/2	3/4	c	16	0	0	7/11	16:20	5	E				1									١		ı				
1 1	1					ı.	1	l .	16:50	1	E				1						1									
		I		-1-	-				16:50		Œ				,	DUP		П			~							1	DUPLICATE	
Clients S								J	J. K									AA.,			-1	l1		1	اا		L		Temperature	°C
.ab: Rec	·					ition	17 '	Y or N	Descri	be Proble	ms, If a	ıy:	***************************************								********	******								
1 Relinq							. /	lein	had	Date: 7	112/06	#2 Relin	quished	By: (Sig)				1	Date:			#3 [Relin	quis	hed	By:	(Sig))	Date:	
Company				5	. /	ر چي کا	R		0	Time: /	7	Compar							Time:				npan				<u>-</u> -′		Time:	*********
1 Receiv	ed E	3y: (Sig)		-6			×		Date: 7	/12/00	#2 Rece	eived By:	(Sig)					Date:			#31	Rece	lved	Ву:	(Sig	1)		Date:	
Company Name:										Time: /	700	Compar	ny Name:						Time:			Con	npan	y Na	ame	:			Time:	

CompuChem
COMPUCHEM
a division of Liberty Analytical Corp.

CHAI	N-OF C	· JÉTANY	RECORD
CHAI	14-06-6	.U3 UU	RECURD

1414 /1

								Pro	ect	Name :	MCK	3 CL	J.		Client	Addres	ss :							-	Poin	nt-o	f-Co	ntac	t :						
a d				-		-		orp.		B	9c	KGK	<u>تيرن د</u>	<u> </u>	rud'	/	BA	KER	ے	- - -	IR	0N)	Me	ώ _τ	AL	\Box) L. J				
•				ison NC			е						(D)				42	0 1	00	<u> 5-£</u>	R		<u> 20 x</u>				Tele	pho	one t	No. :	41	2/269	7-20	७१८	
				833										832	7013	2	(0,	2401	00	4	5,	a	1 /	5/0	8	_ [Sam	nplii	ng d	comp	olete?	(Por N	l (see	Note	1)
											ple	Name		ARIC	<u>s</u> ve		Sampl	ier Signa	2-		1000000000	لق	-		· · · · · · · · · · · · · · · · · · ·	J	^o roj	ect-	spe	cific	(PS) (or Batc	h (B) Q	0?_	
30X #1	1. S							rip B	lank			BOX #2	A. HCI+		F. Ice O	•		BOX #3			iltered			Box	#4	ł	H. HI	lgh		Вс	ox #5	C. CLP	3/90	Т.	TCLP
	2. G				er		7. C						B. HNO		G. Othe					U, U	Infilte	red				Ņ	VI. M	ledlu	ım			S. SW-	846		
	3. L)				Vaste								SO4 + Ic										L	Lo	W				W. CW	/A 600-se	eries	
	4. R							ther_			-			04 + Ice	I. ZnAc-	+NaOH +	ice															O. Oth	er		
	ნ, გ	OII /	3ec	lime	nt/	Siua	ge						E. Unpr	····				<u></u>		·				L										<u>.</u>	
(9 ch		ımp			imu	ım)		Date Vear & dec		L T Me		Matrix xog	Preservative og	Filtered / Unfiltered as 8 Box #3	Expected Conc. og	Method wethod	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	svoc	Pesticide	PCB Herbicide	Metals / Mercury	Cyanide	TOC/TOX	080 Inn				F	Re	marks	s / Con lotes 2	ımen	ts
1 o c	2	B	Ŀ	O	6	0	4	71	11	16:	50	Š	E				1	MS/MS	1 1				U							1	15	Ms	<u> </u>		
10c	2	B	દ્વ	6	7	٥	0	7/	11	15:	35	5	ے ا					′			ı										7				
4 0 c	1 1	. 1	1	1	1					i		i	E				1					1			十	十	\top	\top	_	+					
a 1 - 1	1 1	1 1	i	1	Į.	l I	1 1			ì		İ	تے				 `		\Box		十	+			十	十	+	+	+	+		**************************************			
A oc	\mathbf{I}			T	Γ							,	 		-	ļ		 	Н	\vdash	-	_ _	\vdash		_	4	4	4	_						
4 0 c	2	B	<u>G</u>	0	8	0	0	71	11	14:	45	5	E				1	DUP					V						l_	نا	101	2611	CAT	حت	
40c	2	B	G	0	8	0	1.	71	11	15:	्र	5	E				1				1		V												
4 o c	1 1			1	1	1				1		5	٤			·	1									1	\top	\top	\top						***************************************
4 o c	1 1				ł	1 1				1		,,,,	E				 	1			十	_			\dashv	\dagger	\dashv	十	十	+	·				
	1	-		T	1					1							 	 	\vdash	\vdash	┰	- -	1	\vdash	╬	+	+	\dashv	+	\dashv			······································	······································	·
4 0 C	1 1	ß	S,	Ш	0	0	0	7/	11	16:	04	5	=		ļ	ļ		ļ	-		_ -	- -	1	\square	_ _	4	_	4		4					
AOC	2	-13	6	\coprod	0	0	2	71	11	16:	14	5	<u>=</u>			<u> </u>																			
Clients Sp	ecial	Ins	tru	ction	ns:								····											***							Ter	nperat	ure		°C
ab: Rece	ved	in G	300	d Co	ondi	tion	? Y	or l	1	Дe	crib	e Proble	ms, If ar	ıy:				<u> </u>																	
1 Relinqu	shed	Ву:	(SI	g)	2					m	<u>/</u> _	Date: 7	12/00	#2 Relin	quished	By: (Sig)	******		·		Date	:		#3 R	eling	ulst	ned (Ву: (Sig)				Dā	te:	
Company I	lame	:		B	A	K	ری	<u>k</u>				Time:	100	Compan	y Name:						Time	:		Com	pany	Na	me:						Tin	ne:	
11 Receive	d By:	: (SI	g)	_/-	ح َ	D		\leq	<u> </u>		-	Date: 🥎	1/12/00	#2 Rece	ived By:	(Sig)					Date	:		#3 R	ecel	/ed	Ву: ((Sig))	··········			Da	te:	
Company f	Jame	:										Time:	inho	Compan	v Name:						Time	•		Com	nanv	Na	me:						Tin	ue.	

CHAIN-OF-Cu	STODY RECORD	No.	UU 15

a division of Liberty Analytical Corp.									IV		Pr	roject	Name :	MC	3 C	_ <u>=</u> J		Client	Addres	ss :							Tr	oin	t-of	-Co	ntact						_
8	div				•		-		Corp	•					D S				KER		ΞZ	וענ	RD	NA	但人)TL							C 10	•			
							enu	1e					Fu		EΧ				Ro								1	Tele	pho	ne î	Vo. :	All	2/2	69-	20	46	
						275 3-50					Ai	rbill N	o.: 8	(802)	832.	7012			ZOAP				DA		51									N (s			
											Sa	ample	r Name	:	VAR	1003			ler Signa			_	E.				_	_						ch (B)			_
BOX #1	1	. S	urfa	ce \	Vat	er		6.	Trip	Blank	<		BOX #	A. HCI	+ Ice	F. Ice O	nly		BOX #3		F. F	iltere	d		Box	#4		1. HI						P 3/90		T. TCL	P
	2	2. G	rou	nd \	Vate	er		7. (Oll					B. HNC	3 + lce	G. Othe	r				U, U	Infilte	ered				N	Л. M	ediu	m			s. sv	V-846			
				nate	t				Was							H. NaH											L	Lo	N				W. C	WA 600	-series	5	
			insa						Othe	r					04 + Ice	I. ZnAc	+NaOH +	Ice													1		0.0	ther			_
		5. S	011 /	Sec	ime	nt /	Slud	ge						E. Unpr	eserved		····	·····	<u></u>						<u> </u>												-
(9 c	Sample ID (9 characters maximum) A O C 2/3 G I I O o 7/11											Time	Matrix Matrix	Preservative sox #2	Filtered / Unfiltered of x	Expected Conc. xog	Box #5	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	svoc	Pesticide	PCB	Metals / Mercury	Cyanide	TOC / TOX	O&G / LPH				P	Re	mari	7 cs / Co	mm	ents	-
40	c	2	B	G	1	1	0	0	7	/ 11	15	:03	5	E)											1	1				, , , , , , , , , , , , , , , , , , ,			
400						Τ	T		T		T	5:15	_	Œ				1				\exists	T		11	7	十	\top	†	1	_						****
AO	Т				1	Ι	1		1		1	:30	-	E	-			,		П		+	_	1		\dashv	+	+	\dagger	十	╁		 -			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	~~				1	T	Т	Т	1		Ţ			E		 		`	 			\dashv	-	1	\vdash	\dashv	╅	+	+					····	-		
400	_				╨	Т	Т	П	Т		T	:41		T		 		-	-	\vdash	┝╾┥	\dashv		1		\dashv	+	-	+	_							
AO	잌	2	13	G	1	3	0	0	7	111	19	:00	5	1 6		ļ	ļ	1.	ļ					<u> </u>	1_1				\perp							_^	
Alo	يا	2	13	6	1	3	0	3	7	111	119	1:13	5	E				1						-	1				١								
400	:	Z	R	G	1	4	0	0	7	111	10	5:30	5	تے ا				l						1-	I		T		T						***************************************		-
. 1 1	- 1			i	1	1	1	i	ł		1		-	E	*****					П				1			1	1	1	┪	1						
AOC 2BG 14027111 15:4 AOC 2BG 14027111 15:4									~	E				1	DUP			\dashv	1	t	#1	\dashv	+	十	\dagger	+	17	100	·	/							
AOC 2 BG1 4 02 7111 15:4									<u> </u>	=	_			;	MS/M			十	\dashv	1	H	\dashv	+	十	\dagger	┪	+ +	/ c	1.	EAT SD	<u></u>						
Clients 8							<u> </u>	1=	1	<u> </u>	בונ	7.7			J	I	<u> </u>	L	1 ym	10 I	Ll										1/0		npera		·····	°C	_
Lab: Red	,						tion	2 1	Y or	N	D	escrib	e Proble	ems, if a	nv:	·										····						1611	ipera	iture_			_
#1 Relina		_				2		7	//	L.	`	77	,	, ,	#2 Relin	quished (Bv: (Sig)		<u>/</u>			Date	 :		#3 F	Reling	uish	ed P	lv: (Sia)					Date:		
Company		,				3	Z	ζ ε		٤.		7	Time: \	7	Compan		<u> </u>					Time			1	npany			7. (<u>g/</u>					Fime:		_
#1 Recei				g)	 /				Ē				Date: 7/12/00 #2 Received By: (Sig)													******	ed By: (Sig) Date:				****						
Company Name:												Time: Company						Nai						_													

	COMPUCHEM
	COMPUCHEM
	a division of Liberty Analytical Corp.
	• • •

		- £			
		\wedge	^_\	~~ ~	~ ~ ~
CHAI	N_I I=.	.(: 🗲	1 31 3 V		1611
VIIA	14-VI .	-0031	OL I		JINLJ

Company Name:

Time:

Project Name: MCB CLEJ **Client Address:** Point-of-Contact : BACKGROUND STUDY BAKER ENVIRONMENTAL JIM COLP 501 Madison Avenue 420 ROUSER Carrier: FED EX Telephone No.: 412/269 - 2098 Cary, NC 27513 818028 32 7012 Airbill No.: ORAOPOUS, MA 15108 Sampling complete? (Y)or N (see Note 1) 1-800-833-5097 Sampler Name: Sampler Signature : 14' R 10US J10 Project-specific (PS) or Batch (B) QC? **BOX #1** 1. Surface Water 6. Trip Blank BOX #2 A. HCI + Ice F. Ice Only **BOX #3** F. Filtered Box #4 H. High Box #5 C. CLP 3/90 T. TCLP 2. Ground Water 7. OII B. HNO3 + Ice G. Other U. Unfiltered M. Medium S. SW-846 3. Leachate 8. Waste C. NaOH + Ice H. NaHSO4 + Ice L. Low W. CWA 600-series 4. Rinsate 9. Other D. H2SO4 + Ice I. ZnAc+NaOH + Ice O. Other_ 5. Soil / Sediment / Sludge E. Unpreserved Box #2 Box #3 Box #1 Box #4 Box #5 PAGE 8 of 11 000 Filtered / Unfiltered ဗ္ဗ Metals / Mercury Expected Conc. N Sample ID No. of Bottles r Lab Q Remarks / Comments ŏ SVOC Pesticide (9 characters maximum) Herbicide (see Notes 2 & 3) Cyanide Matrix ş PCB 6 7/11 Ē 7/11/16:45 16/0/0/7/11/17:00 5 7/11/17:15 ست ست 00 7/1/17:30 0 Œ E 16 15 Clients Special Instructions: **Temperature** Lab: Received in Good Condition? Y or N Describe Problems, If any: #1 Relinquished By: (Sig) Date: 1 #2 Relinquished By: (Sig) Date: #3 Relinguished By: (Sig) Date: Time: 1700 Company Name: Company Name: Time: Company Name: Time: #2 Received By: (Sig) #1 Received By: (Sig) Date: Date: #3 Received By: (Sig) Date: Company Name: Time: 1760 Company Name: Time:

Note (1): If "N" lab will hold samples to await remainder of project-maximizing batch size and minimizing QC ratio; if "Y" lab will begin processing batches now. Note (3): All lab copies of data destroyed after three years.

	CHAIN-	-OF-C	JŚTODY	RECORD
--	--------	-------	--------	--------

101021

						r						Proj	ect	Name :	MCS	Cru	3		Client	Addre	ss :							Po	int-	of-C	ont	act :			
		8 G				iber					orp.	13	AC	KGR	שטע	2_ ه	LND,	<u> </u>	BA	KER		Ē	N	VIR	DA	٠ ر		1_		~	1,	m Cu	الإساد		
			ס			disc , NC)		Carr				Œ	X		42	DR	OUE	.2	R		20.	40		Те	lept	none	e No	.: 412/	269-1	2098	,
)-83						Airb	II N	o. : 🔥	8180	<u> </u>	6932	_	Col	RADI	PO	41	2	PI		51	18					mplete?			
												Sam	ple	r Name		MAKE	20			er Signa				いい				_				fic (PS) or			
BO	X #1	i				Wa					rip Blank			BOX #2	A. HCI+		F. Ice O	•		BOX #3			lterec	t		Box	#4		High			Box #5 C			T. TCLP
						Wa	ter			'. O					B. HNO		G. Othe	***************************************				U. U	nfilte	red	l			M.	Med	lum		s	. SW-846		
				Lead							/aste				C. NaO			SO4 + Ic	-									L. l	Low			V	V. CWÄ 600	0-serie	s
				Rins			•				ther	-	-			04 + Ice	I. ZnAc	+NaOH +	Ice						- 1							, (D. Other	i	
			5. (2011	/ 5	edim	ient	/ 51	uage	<u> </u>			لــــ		E. Unpr	eserved		·	,	<u> </u>		····			l							L			
	(9	cha			•	e IC		nun	n)		Date: Year: 2000	Time		Matrix Matrix	Preservative sox #5	Filtered / Unfiltered og 8	Expected Conc. vog	Box #5	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	svoc	Pesticide	Herbicide	Metals / Mercury	Cyanide	10C/10X 0&G/TPH		Z C			'Rem	arks / Co	omm	ents -
Δ	0	^	1	6	ماد	ا،	4	راء	ما	\neg	7/18	17 :	30	5	تير ا				,				T	T				T		7					
				Т	T		Т					T				 	 		 		+		十		1	+		+	1	-		 			
<u> </u>	0	ك	6	L	ЩG	* //	- 1	44	미;	ᅿ	7/18	17:	4	_5				ļ		ļ	\perp				4			丄	4						
				<u>L</u>							/	<u>:</u>													1		1								
A	0	ری	႘	1	1		1/4	40	اد	١l	1	09:1	2	5	1=				,								\top	T							***************************************
_	0		1	1	- 1	1	_			\overline{a}	,	09:	10	5	\in				1		1			十		力	\top	1						***********	
	۲)	12	1	4		4	十	عالا	4		1	~				 	 		 	\vdash	\dashv	-	+-	4	+	- -	╀	1						·
			<u> </u>	<u> </u> _	\downarrow	\bot	4	4	4	4		<u> </u>	_		ļ					<u> </u>								L							
					1	1		Ì	1		1	1:											Ì		1	1	1								
			Г	T	1	十	1	\top	\top	T		 								1		\neg	+	+	\vdash	_	╁	+	\vdash	-					
	_	_	 	╀	+	╀	+	╬	+	4		├ ः	_				 	 		ļ	\vdash	-	_		\vdash	_	4	╄							
			L	L	\perp	\perp	\perp	\perp				<u> </u>												ļ.				1							
											1] :														T	T	T							
CII	ents	Spe	ecla	ıl In	str	uctio	ons											1	L		1			L				1	ابسلا	1	1	Temr	erature _		°C
La	o: R	ecei	ved	l In	Go	od C	one	ditio	on?	Y	or N	 Des	crib	e Proble	ms, If an	ıy:																<u></u>			
#1	Reli	nqui	she	d B	y: (\$	sig)	F	8.	Ţ.	. /	Klei		/	Date: 7/	20/00	#2 Relin	quished l	By: (Sig)					Date:			#3 R	elinau	ished	i Bv:	(Sia	1)	,		Date:	
Co	mpa	ny N	lam	e:					BA	4/	KER	7		Time:	100	Compan	y Name:						Time:			Comp				<u> </u>	·			Time:	
#1	Rec	elve	d By	<u>/: (</u> S	ig)		_/_	_	9	•		X				#2 Rece	· · · · · · · · · · · · · · · · · · ·	(Sig)		_			Date:			#3 R	-			3)			***************************************	Date:	
Co	mpa	ny N	lam	e:			. ,								7	Compan							Time:		ľ	Comp				t				Time:	

COMPUCHEM

CHAIN-	OF-C	USTOD	Y RECORD

	ر زادن								Corp.			•				CL			Client	Addre	ss:								Po	int-c	of-C	ont	act:	
	a ur								согр.							<u>ر هي -</u>	<u>'</u>		BA	KER	>	ϵ		VII	20	ربر]			11	M (ULP	
		JC			ison NC			ie			Car	rier	: <i>[</i>	6	<u> </u>	<u> </u>			42	.O A	201)		Te	lept	one	No	1: A12/219-2091	9
					833										28	326	954		Cor	RAO	P	پ ر	-75	5./	9,9	15	5/6	98	Sa	mpl	ing	cor	mpleteなyor N (see Not	e 1)
											Sar	nple	r Name	e :	<u> </u>	ARU	303		Sampl	er Sign	atur	e :			E.J.								fic (PS) or Batch (B) QC ? _	
BOX #1					Wate				•	Blank	:		BOX #				F. Ice O	•		BOX #3	3	F, F	ilter	ed		В	ox#	4		ligh				. TCLP
					Nate	er		7. (3 + Ice	G. Othe					U. l	Jnfill	tered		ı			М. І	Med	lum	- 1	S. SW-846	
			.eac Rins	hate	;				Wasi Other							+ lce			-										L. L	.ow			W. CWA 600-series	
:					dime	nt /	Shid		Other	·		-				04 + Ice eserved	I. ZNACH	NaOH +	ICE							1						1	O. Other	
<u>'</u>							<u> </u>	go,	1		· · ·							·		<u> </u>														
(9 (ha			p ie s n		imu	um)		1	Date: Year. 4 000	Time		Matrix og		Preservative ×	Filtered / Unfiltered & **	Expected Conc. × 98	Box #5	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	svoc	Pesticide	PCB	Herbicide	Cvanide	roc) rex	0&G/TPH					Remarks / Commer (see Notes 2 & 3)	nts
S 2	5	6	I	S	0	2	0	1	7	118	08:	25										-				Ť	7		П					***************************************
52	- 1	- 1	1	•			1		1		1			1											\top	1		,						
					1	Ι	T	1	1					╫			*******				├	-	\vdash	-		-	-	╀		_	\dashv			
				_	0		Т	Г	Т		98:			+-						<u> </u>	_	_				\downarrow	1	1						
<u> </u>	Ц	8	工	5	0	1	0	3	7	1/8	07:	<u> 58</u>															V	1					<u> </u>	
52	9	9	工	S	0	2	0	1	7	//8	10:	٥S															1	T						
52	-		_	-		T	T	1	$\overline{}$		T														十	T	1,	十				\dashv		
5 2			-		1	1	T	1			υ٩:			╁										+	\dashv	+	+	_	\vdash	\dashv	+	-		
															•					 	-	-	-		+	╁	+	+-			+	-		
<u>S</u> 3	9	<u>5</u>	1	3	0	 	0	-	 '	///	16:	10		+							_	_		_		_	u	_			_	_		
<u>S</u> 3	0	*	I											—							_						V							
52	9	9	I	2	0	5	0	6	7	118	14:	<u>d</u> 0															V	1				Ì		
Clients	Spe	cia	Ins	tru	ction	ıs:						···																					Temperature	°C
Lab: Re	ceiv	/ed	in (300	d Co	ondi	tion	? \	Y or	NK	De	scrib	e Probl	ems,	if an	<u>y:</u>															-			-
#1 Relin	uis	hed	Ву	(Si	g)	2		· /		<u> </u>	-/a-	1	Date:	7/12	luc	#2 Relind	uished f	By: (Sig)					Date	e:		#3	Rel	inqui	shed	Ву:	(Sig))	Date:	
Compan	y Na	ame): 			-		-	4Ke	i K		<u> </u>	Time:	13	ov	Company	/ Name:						Tim	e:		Co	ompa	any N	ame	:			Time:	
#1 Rece	ved	Ву	: (Si	g)		E	<u>ستن</u>	0	C	ΞX	(Date:	7/18	les	#2 Recei	ved By: (Sig)					Date	e;		#3	Rec	elve	ву:	(Sig)		Date:	
Compan	y Na	ame);										Time:	170	00	Company	/ Name:			· .			Tim	e:		Co	ompa	any N	ame				Time:	

COMPUCHEM
a division of Liberty Analytical Corp.

CHAIN-OF-CUSTODY RECORD

No.

101011

	Name: MCB CLGJ	Client Address :	Point-of-Contact :
	MU STUDY	BAKER ENVIRON	Jim CULP
501 Madison Avenue Carrier Cary, NC 27513		420 ROUSER RD	Telephone No. : 412/209-2096
1-800-833-5097 Airbill N	vo.: 818028326954	CORMOPORIS, PA 15/0	Sampling complete? (Yor N (see Note 1)
	er Name: VAR 10US	Sampler Signature : E JE	Project-specific (PS) or Batch (B) QC ?
BOX #1 1. Surface Water 6. Trip Blank	BOX #2 A. HCI + Ice F. Ice Only	BOX #3 F. Filtered Box #4	
2. Ground Water 7. Oil	B. HNO3 + Ice G. Other	U. Unfiltered	M. Medium S. SW-846
3. Leachate 8. Waste	C. NaOH + Ice H. NaHSO4 + Ice		L. Low W. CWA 600-series
4. Rinsate 9. Other 5. Soil / Sediment / Sludge	D. H2SO4 + ice I. ZnAc+NaOH +	ice	O. Other
5. Son / Sediment / Studge	E. Unpreserved		
Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID	Matrix Preservative xos Filtered / Unfiltered xos Expected Conc. xos Method xos	No. of Bottles Use for Lab QC (MS or DUP) VOA SVOC Pesticide PCB Herbicide Adetals / Mercury Cyanide	Remarks / Comments (see Notes 2 & 3)
S31 S I S 0 3 0 7 7/17 16:00			
5303 IS 0 4 0 2 7/17 13:50			
52727503027117/4:50			
<u> </u>	5		
52555501047/18/0:39	5		
SM 43 IS 04 0 7 7/18 11:37	5		
SM43IS0107711811:28			
5254550105711810:07			
			
			
5256150301711808.18		<u> </u>	
Clients Special Instructions:			Temperature°C
Lab: Received in Good Condition? Yor N Descrit	be Problems, If any:		
#1 Relinquished By: (Sig)	Date: 7/8/uo #2 Relinquished By: (Sig)	Date: #3 Relin	quished By: (Sig) Date:
Company Name: BAKER	Time: /700 Company Name:	Time: Compan	y Name: Time:
#1 Received By: (Sig) FED EX	Date: 1/8/CC #2 Received By; (Sig)	Date; #3 Rece	lved By: (Sig) , Date:
Company Name:	Time: 10c Company Name:	Time: Compan	y Name: Time:

COMPUC	I'	roject Name	: MCG	Cre	J		Client	Addres	ss ;							Po	int-	of-Co	ntact :					_
a division of Liberty Analy 501 Madison Aver		SWMU					BA	KER		<u>ر تنبع</u>	v	12	ىرى			\mathbb{L}			Tim	C	الاسا و)		
Cary, NC 2751	3 1≃		F&D			·····	42	OR	00	<u>5÷</u>	K_	2	D .			Te	leph	one	No. : ≺		69-21			
1-800-833-5097	, <u>A</u>		<u>31802</u>	8320	<u>6954</u>		Cod	CAOP	04	15	_£	A	-1	51	08	Sa	mpl	ing	comple	te?(Y)	or N	(see N	ote 1)	
		ampler Nam		/ARIO			Sampl	er Signa		-		LE 3	111			Pro	ojec	t-spe	cific (F	'S) or E	Batch (B) QC 1	?	:
BOX #1 1. Surface Water	6. Trip Blank	BOX #	#2 A. HCI		F. Ice Or	•		BOX #3		F. Filte	ered		1	Box #	#4	H. 1	High		Box	#5 C.	CLP 3/90)	T. TCI	P
2. Ground Water	7, Oil		B. HNO		G. Other				ı	U. Un	filtere	ď				M . I	Medi	lum		S.	SW-846			
3. Leachate 4. Rinsate	8. Waste 9. Other				H. NaHS											L. L	.ow				. CWA 60	00-serie	s	
5. Soil / Sediment / Sit	***************************************		E. Unpr		I. ZnAc+	NaOH +	ice						Ì							0	. Other			-
C. CON / CCUMENT / OR	iage																							
Sample ID (9 characters maximum	Date:Year.ZOOD	Time Matrix xog	Preservative x x x x x x x x x x x x x x x x x x x	Filtered / Unfiltered x x3	Expected Conc. xoB	Method xom xom xom xom xom xom xom xom xom xom	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	SVOC	PCB	Herbicide	Metals / Mercury	Cyanide	0&G / TPH				P	Rema	arks / Cee Note	omm	ents	
5 M4 3 I S 0 3 C	77/17/1	8:17 5	Œ				,		П			П			7									
5 \$ 1 6 T 5 0 1 c			<u>E</u>	•			1	 	f	1	十	\Box	\dashv	┪	-	+-		+	_					
	1 1 1								\vdash	╌┼╴	╅	╂╼┨	\dashv	- -	4	\vdash		+	-					
5316IS030								ļ	\vdash	_ _	-	\sqcup	_		4	<u> </u>		_	_	- 				
527215010	27/17/	4:33 5	ت			***************************************	1			\perp					+									
530215036	37/17/1	323 5	E	-			þ							.	4									
526455010			(=				1				1		\top	١,	1					 	*************************************	**************************************		
SM43 I SO 20	1 1 1	1	(=							\top	+	\Box	\dashv	1	╁			_		,				
								 	\vdash	-	-	\vdash	\dashv	- -	7-	\vdash								
SAGAISOIC	1 1 1	1	E	<u> </u>					\vdash	-	+-	\vdash	_	- -	4-	\sqcup		-						
S316IS020	147/17/1	1	E				1				↓_	$\perp \downarrow$		'	1	Ц		_					·	
<u> </u>	27117/4	4:20 5	<u> </u>				-t								4			ı						
Clients Special Instructions:				····																Tempe	erature		°C	_
Lab: Received in Good Condition	n? YorN . C	Describe Prob	lems, If ar	ıy:																				
#1 Relinquished By: (Sig)	. Re	Date:	2/4/00	#2 Relin	quished B	y: (Slg)				D	ate:	: -	#	#3 Re	llnqu	shed	Bv:	(Sia)	***************************************			Date:	·····	_
Company Name:	AKER	Time:	1700	Compan	y Name:					TI	me:				any N							Time:	······································	_
#1 Received By: (Sig)		Date:	dishe	#2 Rece	lved By: (Sig)				D	ate:				celve)				Date:		
Company Name:		Time:	1700							TI	me:				any N				****			Time:	***************************************	

COMPTICATION
COMPUCHEM
a division of Liberty Analytical Corp.

CHAIN-OF-CUSTODY RECOR	CHAI	V-OI	-CI	UST	YOO	REC	ORE
------------------------	------	-------------	-----	-----	-----	-----	-----

										IVI				MCA			,	Client	Addre	ss :								Poir	nt-o	f-Co	ontact :	·		***********		
	8									Corp.				<u>S1</u>				BA	KEP	e_	نے	ĒΔ	עכ	IR	OAL	.					JIM	ч	Cu	-204		
						isor NC		/enu 313	16			Carrier		EE				42	10 A	Po		± 16	<u>.</u>	R				Tele	pho	one	No. : -	412	269	-204	P	
						833						Airbill !	10.:8	18021	3326	932		Co	RAO	PC	24	2.	Pr	9 1	15/	0 8	3	San	npli	ng	comple	ete?(Yor N	l (se	e Note	1)
												Sample	r Name	;	MARIT	CVC		Sampl	ler Signa	ature	9 :	/	تے	JK	,									h (B) Q		
вох	#1					Wat				Trip B	lank		BOX #2	A. HCI	- Ice	F. Ice O	•		BOX #3	3	F. FI	ltere	d	•	Во	x #4		H. H			Box		C. CLF			TCLP
						Nate	er		7.				1	B. HNO		G. Othe					U. U	nfilte	ered		1			M. M	ledlu	um			s. sw	-846		
					hate	:				Waste					H + Ice												1	L. Lo	W				W. CV	/A 600-s	eries	
				insa		_ مداف		المراد		Other,					04 + Ice	I. ZnAc	·NaOH +	Ice							-							1		ner	· · · · · · · · · · · · · · · · · · ·	
		_ 0), S	OII /	260	aime	nt /	Slud	ge				<u> </u>	E. Unpr	eserved				<u> </u>													<u> </u>	1		₹.	
-	(9 c					ID nax	imu	ım)		Oder 2000	ac. rea.	Time	Matrix sox #1	Preservative og xx	Filtered / Unfiltered og	Expected Conc. xog	Method xog	No. of Bottles	Use for Lab QC (MS or DUP)	VOA	/oc	sticide	PCB Herbicide	Metals / Mercury	Cyanide	TOCHER	iG / TPH					t Re		l con lotés 2		1s
	T					Τ_	Τ	Τ		╅┯═		 	1	1	<u> </u>	<u>ũ</u>	Š	Ž	<u> 5€</u>	ž	S	٢	진 그	<u> </u>	3	E	<u>ة</u>	\dashv	\dashv	+						
			_			1		_	7			19:07	T	=				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>			4		1	_	4	4	_	4	_						
S	2 5	5 1	8	I	5	0	2	0	7	7/	18	18:08	5	<u>É</u>				1								2										
S	2 8	3 5	5	I	5	0	3	0	4	7/	19	08:10	S	E				(N										
\Box	T					Γ					,												\top	1	T		7	十	\dashv	十	_					
\dashv	+	╁	-		 	╂─	╁	╁	-	+-		<u> </u>	 	 						╂╌┨	\vdash	+	+	-	╂—	$\left\{ \cdot \right\}$	\dashv	+	+	+					····	
4	_	4	_		_	_	_	_	_	_/	·	-:-	ļ		 	ļ				\sqcup		_		1_	_											
										/		<u>:</u>															١		١	١						
										1	,			ļ										Τ	Τ					\top			****		······	
										1						ļ						十	_	1	T		7	十	+	\top	_		······································			-
1	+	\dagger	1		 	╁	一	 		广		<u> </u>								H	\vdash	+	+	+	╁	\vdash	+	+	\dashv	\dashv		·				
\dashv	+	+	\dashv		┝	-	├-	╀	╀	+'		 	 	 	<u> </u>			 	 	$\left - \right $	-	+	-	╂-	+	H	4		4	_						
	\bot				_	L			<u></u>			<u>L.:</u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>		Ш	\bot					\perp		\perp	$oldsymbol{\perp}$						
Clie	nts S	pec	cial	Ins	tru	ctio	ns:							· · ·			····	······································					~								V	Ten	perat	ure		<u>°C</u>
Lab	Rec	eiv	ed	in C	300	d Co	ond	ition	?	y or N	1	Descri	7	ems, if an		**************************************								····												
#1 F					(SI	g)		لبز	<u>// .</u>	4		~ Y		20/00			By: (Sig)				1	Date	:	-	#3	Relin	quis	hed E	Ву: ((Sig)				Da	ite:	_
Con	pany	Na	me	:					-	1K.	ا خ		Time:		Compan		·····					Time	<u>:</u>		Cor	mpan	y Na	me:			. ·			Tir	ne:	
#1 F	eceh	/ed	Ву:	(Si	g)		_/	-	=	D	<u> </u>	X		20/01	1	···	Sig)					Date:	:		#3	Rece	ived	Ву: ((Sig))				Da	ite:	
Con	pany	Na	me	<u>:</u>									Time:	1700	Compan	y Name:	·					Time): 		Coi	mpan	y Na	me:				·		Tìr	ne:	

APPENDIX E ANALYTICAL DATA AND STATISTICS FOR FINE SAND SURFACE SOILS

APPENDIX E.1
ANALYTICAL RESULTS FOR FINE SAND SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG02-00	BASE-BG03-00	BASE-BG04-00	BASE-BG05-00	BASE-BG06-00	BASE-BG09-00	BASE-BG10-00	BASE-BG11-00
SAMPLE DATE	7/13/00	7/13/00	7/11/00	7/13/00	7/13/00	7/14/00	7/13/00	7/11/00
METALS (mg/kg)								
Aluminum	1380	2090	8530	2320	3140	190	5390	2540
Antimony	0.24 UJ	0.27 Ј	0.32 UJ	0.19 U	0.22 UJ	0.26 J	0.19 U	0.42 UJ
Arsenic	0.73	0.27 U	0.42 Ј	0.3 Ј	0.27 U	0.26 U	0.64 J	0.83 J
Barium	6	6.3	14	9.5	6.7	1.6	12	14.1
Beryllium	0.058 U	0.042 J	0.11 U	0.094 J	0.038 U	0.02 J	0.07 J	0.11 J
Cadmium	0.021 U	0.021 U	0.021 U	0.02 U	0.021 U	0.02 U	0.02 U	0.11 J
Calcium	52.7 J	87.6 J	170	17400	152	46.2 U	592	105000
Chromium	0.85	1.9	9.4	2	3	0.51 J	6.4	9.7
Cobalt	0.19 J	0.083 U	0.4 J	0.12 J	0.14 J	0.082 U	0.34 J	0.3 J
Copper	0.73	0.88	1.3	0.41 U	0.83	2.1	1.5	2.9
lron	365	971	5000	1040	623	126	3830	2420
Lead	3.1 J	3 J	7.4 Ј	4 J	4.6 J	2.8	5.4 J	38.5 J
Magnesium	27.9 Ј	47.4 J	274	333	65.3 J	14 U	146	1610
Manganese	17	2.1 J	5.1	9.5 J	2.1	2.3 U	6.4 J	25.9
Mercury	0.028 UJ	0.048	0.038	0.044 U	0.053 UJ	0.053 U	0.05 U	0.069
Nickel	0.84	0.64	1.6	0.64	0.91	0.092 U	1.4	1.6
Potassium	22.3 J	34.4 J	169 J	45.8 J	73.8 Ј	13.2 U	88.4 J	263 Ј
Selenium	0.23 U	0.23 UJ	0.36 J	0.22 UJ	0.25 J	0.22 U	0.22 UJ	0.63 J
Silver	0.084 U	0.083 U	0.085 U	0.079 U	0.082 U	0.082 U	0.08 U	0.083 U
Sodium	26.2 U	62.8 U	37.7 U	64.7 U	61.1 U	73.7 U	69.1 U	307
Thallium	0.35 UJ	0.34 UJ	0.35 UJ	0.32 UJ	0.34 UJ	0.34 UJ	0.33 UJ	0.34 UJ
Vanadium	1.2 J	2.8	13.4	2.2 U	3.4	1.2 J	9.8	7.7
Zinc	1.5 U	2.5 U	3.8	2.7	2.8 U	1.5 J	3.4	18.4

U - Not Detected

mg/kg = Milligrams per Kilogram

APPENDIX E.1
ANALYTICAL RESULTS FOR FINE SAND SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG17-00	BASE-BG18-00	BASE-BG20-00	BASE-BG21-00	BASE-BG22-00	BASE-BG23-00	BASE-BG24-00	BASE-BG25-00
SAMPLE DATE	7/13/00	7/14/00	7/16/00	7/15/00	7/14/00	7/11/00	7/13/00	7/15/00
METALS (mg/kg)								
Aluminum	2140	894	2520 J	53.9	4270 J	2660	123	1460
Antimony	0.19 U	0.2 U	0.34 J	0.19 U	0.25 J	0.9 J	0.37 UJ	0.31 J
Arsenic	0.26 U	0.27 U	0.29 U	0.26 U	0.85 J	0.28 U	0.27 U	0.46 J
Barium	6.1	2.4	9.2	2.3	9.2	9.1	3.6	5.7
Beryllium	0.047 J	0.01 U	0.061 J	0.016 J	0.038 J	0.066 U	0.013 U	0.082 J
Cadmium	0.02 U	0.021 U	0.022 U	0.02 U	0.02 U	0.021 U	0.021 U	0.02 U
Calcium	49.4 J	44.2 J	48.6 J	43.7 U	171	3840	327	112
Chromium	1.7	0.98	3.5	0.29 U	4.4	3.3 J	0.42 J	1.4
Cobalt	0.081 U	0.083 U	0.17 J	0.08 U	0.19 J	0.2 J	0.083 U	0.089 J
Copper	1.2	1.1	0.53 U	0.24 U	1.2	18.2	4.1	0.97 U
Iron	858	751	707 J	44	1890 J	1440	106	884
Lead	8 J	4 J	4.3 J	0.45	8.7 J	32.5 J	3 Ј	7
Magnesium	48.7 J	18.8 J	75.2 J	9.5 U	95.9 J	106	56.2	88.6 J
Manganese	8.7 J	2.6 J	1.6	3.3 J	5.5	18.7	3.1	2.3 J
Mercury	0.037 U	0.033 U	0.032 J	0.045 U	0.04	0.028 J	0.036 UJ	0.063 U
Nickel	0.48 J	0.24 J	0.11 J	0.09 U	0.9	1.8	0.64 U	0.55
Potassium	27.6 Ј	15 J	74.2 J	6.5 U	73 J	54.7 J	36.8 J	34.2 J
Selenium	0.22 UJ	0.23 UJ	0.63	0.22 U	0.22 U	0.23 U	0.34 J	0.32 J
Silver	0.081 U	0.083 U	0.089 U	0.08 U	0.081 U	0.085 U	0.083 U	0.11 J
Sodium	55.7 U	53.3 U	103 U	46.5 U	75.8 U	52.4 U	85.7 U	78 U
Thallium	0.34 UJ	0.34 UJ	0.37 UJ	0.33 UJ	0.33 UJ	0.35 UJ	0.34 UJ	0.34 UJ
Vanadium	2.4	1.8 J	4.7	0.44 J	6.8	3.6 J	0.49 J	3.8
Zinc	5.2	3	0.36 J	0.24 U	1.9 J	25.4	10.8	5.6

U - Not Detected

mg/kg = Milligrams per Kilogram

APPENDIX E.1

ANALYTICAL RESULTS FOR FINE SAND SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE DATE 7/14/00 7/14/00 7/15/00 7/16/00 7/16/00 7/15/00 7/14/00 7/15/00 METALS (mg/kg) Aluminum 919 73 J 2870 29.4 6350 1470 31 1820 Antimony 0.37 J 0.26 J 0.19 U 0.22 UJ 0.22 UJ 0.22 U 0.2 U 0.28 J Arsenic 0.25 U 0.33 U 0.35 J 0.26 U 0.3 U 0.3 U 0.27 U 0.26 U Beryllium 0.026 J 0.013 U 0.05 J 0.018 U 0.08 J 0.033 J 0.018 J 0.035 J 0.018 U 0.08 J 0.033 J 0.018 J 0.035 J 0.018 U 0.08 J 0.033 J 0.018 J 0.035 J 0.018 U 0.08 J 0.033 J 0.018 J 0.035 J 0.018 U 0.08 J 0.033 J 0.018 J 0.035 J 0.018 U 0.023 U 0.023 U 0.021 U 0.021 U 0.02 U 0.021 U 0.021 U 0.02 U 0.023 U 0.023 U 0.021 U 0.02 U 0.02 U <th>SAMPLE ID</th> <th>BASE-BG26-00</th> <th>BASE-BG27-00</th> <th>BASE-BG28-00</th> <th>BASE-BG30-00</th> <th>BASE-BG31-00</th> <th>BASE-BG32-00</th> <th>BASE-BG33-00</th> <th>BASE-BG34-00</th>	SAMPLE ID	BASE-BG26-00	BASE-BG27-00	BASE-BG28-00	BASE-BG30-00	BASE-BG31-00	BASE-BG32-00	BASE-BG33-00	BASE-BG34-00
METALS (mg/kg) Alluminum 919 73 J 2870 29.4 6350 1470 31 1820 Antimony 0.37 J 0.26 J 0.19 U 0.22 UJ 0.22 UJ 0.22 U 0.22 U 0.22 U 0.22 U 0.28 J Arsenic 0.25 U 0.33 U 0.35 J 0.26 U 0.3 U 0.3 U 0.27 U 0.26 U Bariam 4.3 0.73 J 6.9 0.28 U 24 2.2 0.48 U 3.5 Beryllium 0.026 J 0.013 U 0.05 J 0.018 U 0.08 J 0.033 J 0.018 J 0.03 J Cadmium 0.019 U 0.026 U 0.056 J 0.02 U 0.023 U 0.023 U 0.021 U 0.02 U Calcium 126 12.4 J 2030 11.8 U 67.8 J 44.7 U 37.2 U 67.5 J Chromiun 1.3 0.22 U 4.3 0.17 U 4.1 1.3 0.26 U 1.9 Chosat 0.076 U 0.11 U									
Aluminum 919 73 J 2870 29.4 6350 1470 31 1820 Antinony 0.37 J 0.26 J 0.19 U 0.22 UJ 0.22 UJ 0.22 UJ 0.2 U 0.2 U 0.28 J Arsenic 0.25 U 0.33 U 0.35 J 0.26 U 0.3 U 0.3 U 0.27 U 0.26 U Barium 4.3 0.73 J 6.9 0.28 U 24 2.2 0.48 U 3.5 Beryllium 0.026 J 0.013 U 0.05 J 0.018 U 0.08 J 0.033 J 0.018 J 0.036 J Cadmium 0.019 U 0.026 U 0.056 J 0.02 U 0.023 U 0.023 U 0.021 U 0.02 U Calcium 1.26 1.24 J 2030 11.8 U 67.8 J 44.7 U 37.2 U 67.5 J Chromium 1.3 0.22 U 4.3 0.17 U 4.1 1.3 0.26 U 1.9 Cobalt 0.076 U 0.1 U 0.16 J 0.079 U 0.26 J 0.094	or man de brite	77 11 10 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11 25,00	11 12100	77 10700	1113100	7714700	1113100
Antimony 0.37 J 0.26 J 0.19 U 0.22 UJ 0.22 UJ 0.22 UJ 0.22 UJ 0.22 UJ 0.22 UJ 0.22 UJ 0.22 UJ 0.22 UJ 0.27 U 0.28 J Arsenic 0.25 U 0.33 U 0.35 J 0.26 U 0.3 U 0.3 U 0.27 U 0.26 U Barium 4.3 0.73 J 6.9 0.28 U 24 2.2 0.48 U 3.5 Beryllium 0.026 J 0.013 U 0.05 J 0.018 U 0.08 J 0.033 J 0.018 J 0.036 J 0.02 U 0.023 U 0.023 U 0.021 U 0.021 U 0.02 U 0.023 U 0.023 U 0.021 U 0.021 U 0.02 U 0.023 U 0.023 U 0.021 U 0.02 U 0.024 U 0.023 U 0.021 U 0.02 U 0.02 U 0.024 U 0.021 U 0.02 U 0.02 U 0.024 U 0.021 U 0.02 U 0.02 U 0.024 U 0.021 U 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U 0.02 U <td< td=""><td>METALS (mg/kg)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	METALS (mg/kg)								
Arsenic 0.25 U 0.33 U 0.35 J 0.26 U 0.3 U 0.3 U 0.27 U 0.26 U Barium 4.3 0.73 J 6.9 0.28 U 24 2.2 0.48 U 3.5 Beryllium 0.026 J 0.013 U 0.05 J 0.018 U 0.08 J 0.033 J 0.018 J 0.036 J Cadmium 0.019 U 0.026 U 0.056 J 0.02 U 0.023 U 0.023 U 0.021 U 0.02 U Calcium 126 12.4 J 2030 11.8 U 67.8 J 44.7 U 37.2 U 67.5 J Chromium 1.3 0.22 U 4.3 0.17 U 4.1 1.3 0.26 U 1.9 Cobalt 0.076 U 0.1 U 0.16 J 0.079 U 0.26 J 0.004 U 0.083 U 0.12 J Copper 1.3 0.34 U 1.7 0.9 1.2 0.82 U 0.28 U 2.2 Lead 3.2 1 J 3.4 0.53 J 5.7 2.3 1.2 2	Aluminum	919	73 J	2870	29.4	6350	1470	31	1820
Barium 4.3 0.73 J 6.9 0.28 U 24 2.2 0.48 U 3.5 Beryllium 0.026 J 0.013 U 0.05 J 0.018 U 0.08 J 0.033 J 0.018 J 0.036 J Cadmium 0.019 U 0.026 U 0.056 J 0.02 U 0.023 U 0.023 U 0.021 U 0.021 U 0.021 U 0.023 U 0.023 U 0.021 U 0.021 U 0.02 U Calcium 126 12.4 J 2030 11.8 U 67.8 J 44.7 U 37.2 U 67.5 J Chromium 1.3 0.22 U 4.3 0.17 U 4.1 1.3 0.26 U 1.9 Cobalt 0.076 U 0.1 U 0.16 J 0.079 U 0.26 J 0.094 U 0.083 U 1.2 J Copper 1.3 0.34 U 1.7 0.9 1.2 U 0.82 U 0.28 U 2.2 U 2.2 I 1.7 0.9 1.2 U 0.82 U 0.28 U 2.2 U 2.6 Magnesium 40.2 L 2.6 Magnesium 2.0 L 2.2 U	Antimony	0.37 Ј	0.26 Ј	0.19 U	0.22 UJ	0.22 UJ	0.22 U	0.2 U	0.28 J
Beryllium 0.026 J 0.013 U 0.05 J 0.018 U 0.08 J 0.033 J 0.018 J 0.036 J Cadmium 0.019 U 0.026 U 0.056 J 0.02 U 0.023 U 0.023 U 0.021 U 0.021 U 0.02 U Calcium 126 12.4 J 2030 11.8 U 67.8 J 44.7 U 37.2 U 67.5 J Chromium 1.3 0.22 U 4.3 0.17 U 4.1 1.3 0.26 U 1.9 Cobalt 0.076 U 0.1 U 0.16 J 0.079 U 0.26 J 0.094 U 0.083 U 0.12 J Copper 1.3 0.34 U 1.7 0.9 1.2 0.82 U 0.28 U 2.2 Iron 456 51.4 J 2200 26.3 2670 1030 40.2 836 Lead 3.2 1 J 3.4 0.53 J 5.7 2.3 1.2 2.6 Magnesium 29 J 7.2 U 107 6.9 U 115 38.5 J 10.1 U	Arsenic	0.25 U	0.33 U	0.35 J	0.26 U	0.3 U	0.3 U	0.27 U	0.26 U
Cadmium 0.019 U 0.026 U 0.056 J 0.02 U 0.023 U 0.023 U 0.021 U 0.021 U 0.02 U Calcium 126 12.4 J 2030 11.8 U 67.8 J 44.7 U 37.2 U 67.5 J Chromium 1.3 0.22 U 4.3 0.17 U 4.1 1.3 0.26 U 1.9 Cobalt 0.076 U 0.1 U 0.16 J 0.079 U 0.26 J 0.004 U 0.083 U 0.12 J Copper 1.3 0.34 U 1.7 0.9 1.2 0.82 U 0.28 U 0.28 U 2.2 It Iron 456 51.4 J 2200 26.3 2670 1030 40.2 836 Lead 3.2 1 J 3.4 0.53 J 5.7 2.3 1.2 2.6 Magnesium 29 J 7.2 U 107 6.9 U 115 38.5 J 10.1 U 53.5 J Mercury 0.048 U 0.021 J 0.071 U 0.017 U 0.12 J 0.066 U	Barium	4.3	0.73 J	6.9	0.28 U	24	2.2	0.48 U	3.5
Calcium 126 12.4 J 2030 11.8 U 67.8 J 44.7 U 37.2 U 67.5 J Chromium 1.3 0.22 U 4.3 0.17 U 4.1 1.3 0.26 U 1.9 Cobalt 0.076 U 0.1 U 0.16 J 0.079 U 0.26 J 0.094 U 0.083 U 0.12 J Copper 1.3 0.34 U 1.7 0.9 1.2 0.82 U 0.28 U 2.2 iron 456 51.4 J 2200 26.3 2670 1030 40.2 836 Lead 3.2 1 J 3.4 0.53 J 5.7 2.3 1.2 2.6 Magnesium 29 J 7.2 U 107 6.9 U 115 38.5 J 10.1 U 53.5 J Marcury 0.048 U 0.031 J 0.071 U 0.017 U 0.12 J 0.066 U 0.036 U 0.063 U Nickel 0.35 J 0.12 U 0.76 0.08 U 1.4 0.31 J 0.093 U 0.53 U	Beryllium	0.026 J	0.013 U	0.05 J	0.018 U	0.08 J	0.033 J	0.018 J	0.036 J
Chromium 1.3 0.22 U 4.3 0.17 U 4.1 1.3 0.26 U 1.9 Cobalt 0.076 U 0.1 U 0.16 J 0.079 U 0.26 J 0.094 U 0.083 U 0.12 J Copper 1.3 0.34 U 1.7 0.9 1.2 0.82 U 0.28 U 2.2 Iron 456 51.4 J 2200 26.3 2670 1030 40.2 836 Lead 3.2 1 J 3.4 0.53 J 5.7 2.3 1.2 2.6 Magnesium 29 J 7.2 U 107 6.9 U 115 38.5 J 10.1 U 53.5 J Marcury 0.048 U 0.053 U 8.5 J 0.29 U 5 9.4 J 5.2 J 14.2 J Mercury 0.048 U 0.021 J 0.071 U 0.012 J 0.066 U 0.036 U 0.036 U Nickel 0.35 J 0.12 U 0.76 0.088 U 1.4 0.31 J 0.093 U 0.53 Potassi	Cadmium	0.019 U	0.026 U	0.056 J	0.02 U	0.023 U	0.023 U	0.021 U	0.02 U
Cobalt 0.076 U 0.1 U 0.16 J 0.079 U 0.26 J 0.094 U 0.083 U 0.12 J Copper 1.3 0.34 U 1.7 0.9 1.2 0.82 U 0.28 U 2.2 Iron 456 51.4 J 2200 26.3 2670 1030 40.2 836 Lead 3.2 1 J 3.4 0.53 J 5.7 2.3 1.2 2.6 Magnesium 29 J 7.2 U 107 6.9 U 115 38.5 J 10.1 U 53.5 J Manganese 4.1 J 0.53 U 8.5 J 0.29 U 5 9.4 J 5.2 J 14.2 J Mercury 0.048 U 0.021 J 0.071 U 0.017 U 0.12 J 0.066 U 0.036 U 0.063 U Nickel 0.35 J 0.12 U 0.76 0.088 U 1.4 0.31 J 0.093 U 0.53 Potassium 17.6 U 5.8 J 66.3 J 3.8 U 79 J 28.9 J 10.3 U 29.8 J	Calcium	126	12.4 J	2030	11.8 U	67.8 J	44.7 U	37.2 U	67.5 J
Copper 1.3 0.34 U 1.7 0.9 1.2 0.82 U 0.28 U 2.2 Iron 456 51.4 J 2200 26.3 2670 1030 40.2 836 Lead 3.2 1 J 3.4 0.53 J 5.7 2.3 1.2 2.6 Magnesium 29 J 7.2 U 107 6.9 U 115 38.5 J 10.1 U 53.5 J Manganese 4.1 J 0.53 U 8.5 J 0.29 U 5 9.4 J 5.2 J 14.2 J Mercury 0.048 U 0.021 J 0.071 U 0.017 U 0.12 J 0.066 U 0.036 U 0.63 U Nickel 0.35 J 0.12 U 0.76 0.088 U 1.4 0.31 J 0.093 U 0.53 Potassium 17.6 U 5.8 J 66.3 J 3.8 U 79 J 28.9 J 10.3 U 29.8 J Selenium 0.21 U 0.28 U 0.37 J 0.22 U 0.25 U 0.26 U 0.033 U 0.079 U	Chromium	1.3	0.22 U	4.3	0.17 U	4.1	1.3	0.26 U	1.9
Iron 456 51.4 J 2200 26.3 2670 1030 40.2 836 Lead 3.2 1 J 3.4 0.53 J 5.7 2.3 1.2 2.6 Magnesium 29 J 7.2 U 107 6.9 U 115 38.5 J 10.1 U 53.5 J Manganese 4.1 J 0.53 U 8.5 J 0.29 U 5 9.4 J 5.2 J 14.2 J Mercury 0.048 U 0.021 J 0.071 U 0.017 U 0.12 J 0.066 U 0.036 U 0.063 U Nickel 0.35 J 0.12 U 0.76 0.088 U 1.4 0.31 J 0.093 U 0.53 Potassium 17.6 U 5.8 J 66.3 J 3.8 U 79 J 28.9 J 10.3 U 29.8 J Selenium 0.21 U 0.28 U 0.37 J 0.22 U 0.25 U 0.26 U 0.23 U 0.22 U Silver 0.076 U 0.1 U 0.079 U 0.079 U 0.091 U 0.094 U 0.083 U	Cobalt	0.076 U	0.1 U	0.16 J	0.079 U	0.26 J	0.094 U	0.083 U	0.12 J
Lead 3.2 1 J 3.4 0.53 J 5.7 2.3 1.2 2.6 Magnesium 29 J 7.2 U 107 6.9 U 115 38.5 J 10.1 U 53.5 J Manganese 4.1 J 0.53 U 8.5 J 0.29 U 5 9.4 J 5.2 J 14.2 J Mercury 0.048 U 0.021 J 0.071 U 0.017 U 0.12 J 0.066 U 0.036 U 0.063 U Nickel 0.35 J 0.12 U 0.76 0.088 U 1.4 0.31 J 0.093 U 0.53 Potassium 17.6 U 5.8 J 66.3 J 3.8 U 79 J 28.9 J 10.3 U 29.8 J Selenium 0.21 U 0.28 U 0.37 J 0.22 U 0.25 U 0.26 U 0.23 U 0.22 U Silver 0.076 U 0.1 U 0.079 U 0.079 U 0.091 U 0.094 U 0.083 U 0.079 U Sodium 48.5 U 112 U 49.5 U 28.8 U 78.7 U 94.3 U 73	Copper	1.3	0.34 U	1.7	0.9	1.2	0.82 U	0.28 U	2.2
Magnesium 29 J 7.2 U 107 6.9 U 115 38.5 J 10.1 U 53.5 J Manganese 4.1 J 0.53 U 8.5 J 0.29 U 5 9.4 J 5.2 J 14.2 J Mercury 0.048 U 0.021 J 0.071 U 0.017 U 0.12 J 0.066 U 0.036 U 0.063 U Nickel 0.35 J 0.12 U 0.76 0.088 U 1.4 0.31 J 0.093 U 0.53 Potassium 17.6 U 5.8 J 66.3 J 3.8 U 79 J 28.9 J 10.3 U 29.8 J Selenium 0.21 U 0.28 U 0.37 J 0.22 U 0.25 U 0.26 U 0.23 U 0.22 U Silver 0.076 U 0.1 U 0.079 U 0.079 U 0.091 U 0.094 U 0.083 U 0.079 U Sodium 48.5 U 112 U 49.5 U 28.8 U 78.7 U 94.3 U 73.2 U 69.1 U Thallium 0.32 UJ 0.42 UJ 0.33 UJ 0.32 UJ 0.38 UJ	Iron	456	51.4 J	2200	26.3	2670	1030	40.2	836
Manganese 4.1 J 0.53 U 8.5 J 0.29 U 5 9.4 J 5.2 J 14.2 J Mercury 0.048 U 0.021 J 0.071 U 0.017 U 0.12 J 0.066 U 0.036 U 0.063 U Nickel 0.35 J 0.12 U 0.76 0.088 U 1.4 0.31 J 0.093 U 0.53 Potassium 17.6 U 5.8 J 66.3 J 3.8 U 79 J 28.9 J 10.3 U 29.8 J Selenium 0.21 U 0.28 U 0.37 J 0.22 U 0.25 U 0.26 U 0.23 U 0.22 U Silver 0.076 U 0.1 U 0.079 U 0.079 U 0.091 U 0.094 U 0.083 U 0.079 U Sodium 48.5 U 112 U 49.5 U 28.8 U 78.7 U 94.3 U 73.2 U 69.1 U Thallium 0.32 UJ 0.42 UJ 0.33 UJ 0.32 UJ 0.38 UJ 0.39 UJ 0.34 UJ 0.33 UJ Vanadium 1.5 B 0.36 J 5.2 0.14 J 6.5	Lead	3.2	1 J	3.4	0.53 J	5.7	2.3	1.2	2.6
Mercury 0.048 U 0.021 J 0.071 U 0.017 U 0.12 J 0.066 U 0.036 U 0.063 U Nickel 0.35 J 0.12 U 0.76 0.088 U 1.4 0.31 J 0.093 U 0.53 Potassium 17.6 U 5.8 J 66.3 J 3.8 U 79 J 28.9 J 10.3 U 29.8 J Selenium 0.21 U 0.28 U 0.37 J 0.22 U 0.25 U 0.26 U 0.23 U 0.22 U Silver 0.076 U 0.1 U 0.079 U 0.079 U 0.091 U 0.091 U 0.083 U 0.083 U 0.079 U Sodium 48.5 U 112 U 49.5 U 28.8 U 78.7 U 94.3 U 73.2 U 69.1 U Thallium 0.32 UJ 0.42 UJ 0.33 UJ 0.32 UJ 0.38 UJ 0.39 UJ 0.34 UJ 0.34 UJ 0.33 UJ Vanadium 1.5 B 0.36 J 5.2 0.14 J 6.5 2.3 J 0.35 J 2.4	Magnesium	29 J	7.2 U	107	6.9 U	115	38.5 J	10.1 U	53.5 J
Nickel 0.35 J 0.12 U 0.76 0.088 U 1.4 0.31 J 0.093 U 0.53 Potassium 17.6 U 5.8 J 66.3 J 3.8 U 79 J 28.9 J 10.3 U 29.8 J Selenium 0.21 U 0.28 U 0.37 J 0.22 U 0.25 U 0.26 U 0.23 U 0.22 U Silver 0.076 U 0.1 U 0.079 U 0.079 U 0.091 U 0.094 U 0.083 U 0.079 U Sodium 48.5 U 112 U 49.5 U 28.8 U 78.7 U 94.3 U 73.2 U 69.1 U Thallium 0.32 UJ 0.42 UJ 0.33 UJ 0.32 UJ 0.38 UJ 0.39 UJ 0.34 UJ 0.33 UJ Vanadium 1.5 B 0.36 J 5.2 0.14 J 6.5 2.3 J 0.35 J 2.4	Manganese	4.1 J	0.53 U	8.5 J	0.29 U	5	9.4 J	5.2 J	14.2 J
Potassium 17.6 U 5.8 J 66.3 J 3.8 U 79 J 28.9 J 10.3 U 29.8 J Selenium 0.21 U 0.28 U 0.37 J 0.22 U 0.25 U 0.26 U 0.23 U 0.22 U Silver 0.076 U 0.1 U 0.079 U 0.079 U 0.091 U 0.094 U 0.083 U 0.079 U Sodium 48.5 U 112 U 49.5 U 28.8 U 78.7 U 94.3 U 73.2 U 69.1 U Thallium 0.32 UJ 0.42 UJ 0.33 UJ 0.32 UJ 0.38 UJ 0.39 UJ 0.34 UJ 0.33 UJ Vanadium 1.5 B 0.36 J 5.2 0.14 J 6.5 2.3 J 0.35 J 2.4	Mercury	0.048 U	0.021 J	0.071 U	0.017 U	0.12 J	0.066 U	0.036 U	0.063 U
Selenium 0.21 U 0.28 U 0.37 J 0.22 U 0.25 U 0.26 U 0.23 U 0.22 U Silver 0.076 U 0.1 U 0.079 U 0.079 U 0.091 U 0.094 U 0.083 U 0.079 U Sodium 48.5 U 112 U 49.5 U 28.8 U 78.7 U 94.3 U 73.2 U 69.1 U Thallium 0.32 UJ 0.42 UJ 0.33 UJ 0.32 UJ 0.38 UJ 0.39 UJ 0.34 UJ 0.33 UJ Vanadium 1.5 B 0.36 J 5.2 0.14 J 6.5 2.3 J 0.35 J 2.4	Nickel	0.35 J	0.12 U	0.76	U 880.0	1.4	0.31 J	0.093 U	0.53
Silver 0.076 U 0.1 U 0.079 U 0.079 U 0.091 U 0.091 U 0.094 U 0.083 U 0.079 U Sodium 48.5 U 112 U 49.5 U 28.8 U 78.7 U 94.3 U 73.2 U 69.1 U Thallium 0.32 UJ 0.42 UJ 0.33 UJ 0.32 UJ 0.38 UJ 0.39 UJ 0.34 UJ 0.33 UJ Vanadium 1.5 B 0.36 J 5.2 0.14 J 6.5 2.3 J 0.35 J 2.4	Potassium	17.6 U	5.8 J	66.3 J	3.8 U	79 Ј	28.9 Ј	10.3 U	29.8 J
Sodium 48.5 U 112 U 49.5 U 28.8 U 78.7 U 94.3 U 73.2 U 69.1 U Thallium 0.32 UJ 0.42 UJ 0.33 UJ 0.32 UJ 0.38 UJ 0.39 UJ 0.34 UJ 0.33 UJ Vanadium 1.5 B 0.36 J 5.2 0.14 J 6.5 2.3 J 0.35 J 2.4	Selenium	0.21 U	0.28 U	0.37 J	0.22 U	0.25 U	0.26 U	0.23 U	0.22 U
Thallium 0.32 UJ 0.42 UJ 0.33 UJ 0.32 UJ 0.38 UJ 0.39 UJ 0.34 UJ 0.33 UJ Vanadium 1.5 B 0.36 J 5.2 0.14 J 6.5 2.3 J 0.35 J 2.4	Silver	0.076 U	0.1 U	0.079 U	0.079 U	0.091 U	0.094 U	0.083 U	0.079 U
Vanadium 1.5 B 0.36 J 5.2 0.14 J 6.5 2.3 J 0.35 J 2.4	Sodium	48.5 U	112 U	49.5 U	28.8 U	78.7 U	94.3 U	73.2 U	69.1 U
	Thallium	0.32 UJ	0.42 UJ	0.33 UJ	0.32 UJ	0.38 UJ	0.39 UJ	0.34 UJ	0.33 UJ
Zinc 2.7 0.31 U 3.1 1.1 U 2.8 U 1.8 J 0.37 U 5.4	Vanadium	1.5 B	0.36 J	5.2	0.14 J	6.5	2.3 J	0.35 J	2.4
	Zinc	2.7	0.31 U	3.1	1.1 U	2.8 U	1.8 J	0.37 U	5.4

U - Not Detected

mg/kg = Milligrams per Kilogram

APPENDIX E.1

ANALYTICAL RESULTS FOR FINE SAND SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG35-00	BASE-BG36-00	BASE-BG37-00	BASE-BG38-00	BASE-BG39-00	BASE-BG41-00	BASE-BG42-00	BASE-BG43-00
SAMPLE DATE	7/16/00	7/15/00	7/16/00	7/16/00	7/16/00	7/15/00	7/16/00	7/16/00
METALS (mg/kg)								
Aluminum	2630 Ј	670	2450 Ј	54.5	1040	1120	2420	79.6
Antimony	0.46 J	0.28 J	0.55 J	0.2 UJ	0.23 UJ	0.48 J	0.33 UJ	0.2 UJ
Arsenic	0.27 U	0.28 U	0.35 U	0.27 U	0.32 U	0.37 J	0.29 U	0.28 U
Barium	6	2.2	1.6	0.93 J	4.4	2.5	4.6	1.1
Beryllium	0.06 J	0.033 J	0.014 U	0.01 U	0.012 U	0.037 J	0.041 J	0.011 U
Cadmium	0.021 U	0.022 U	0.027 U	0.021 U	0.037 Ј	0.064 J	0.022 U	0.021 U
Calcium	423	77.2 J	30.7 J	143	222	402	268	25.3 J
Chromium	2.2	0.9	2.6	0.24 Ј	1.4	1.7	2.3	0.41 J
Cobalt	0.15 J	0.086 U	0.11 U	0.084 U	0.098 U	0.097 U	0.14 J	0.085 U
Copper	38.5	1.1	1 U	0.43 J	0.88	1.2	5.4	0.29 J
Iron	1520 J	434	538 J	40.1	369	724	1090	55.8
Lead	4.3 J	3.9	2.4 J	0.99	5.8	2.1	3.7	1.5
Magnesium	159	32.1 J	19.8 J	21.6 J	24.7 J	42.2 J	81.1 J	9.8 J
Manganese	16.9	2.8 J	1. U	0.74 J	1.7	4.5 J	5.8	0.94 J
Mercury	0.04	0.08 U	0.029 J	0.051 J	0.086 J	0.05 U	0.059 J	0.047 J
Nickel	0.62	0.097 U	0.3 J	0.095 U	0.19 J	0.37 J	0.53 J	0.096 U
Potassium	47 Ј	18.8 U	23.7 J	10.2 J	18.7 J	21.9 U	33.6 J	13 J
Selenium	0.46 J	0.24 U	0.31 J	0.23 U	0.27 U	0.27 U	0.24 U	0.23 U
Silver	0.083 U	0.086 U	0.11 U	0.084 U	0.098 U	0.097 U	0.089 U	0.085 U
Sodium	111 U	67.4 U	127 U	83.6 U	94.8 U	95.4 U	74.3 U	78.8 U
Thallium	0.34 UJ	0.36 UJ	0.45 UJ	0.35 UJ	0.4 UJ	0.4 UJ	0.36 UJ	0.35 UJ
Vanadium	2.4	1.5 J	3.7	0.27 Ј	1.5 J	1.8 J	2 J	0.54 J
Zinc	3.4	1.3 J	5.3	1.6 U	6.3	1.5 J	73.9	1.3 U

U - Not Detected

mg/kg = Milligrams per Kilogram

APPENDIX E.1
ANALYTICAL RESULTS FOR FINE SAND SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

				C10-0371			
SAMPLE ID	BASE-BG44-00	BASE-BG45-00	BASE-BG46-00	BASE-BG47-00	BASE-BG48-00	BASE-BG49-00	BASE-BG50-00
SAMPLE DATE	7/16/00	7/17/00	7/13/00	7/16/00	7/12/00	7/12/00	7/12/00
						٠	
METALS (mg/kg)							
Aluminum	3160	664	478	708	40.8	7280	41.6
Antimony	0.2 UJ	0.2 UJ	0.46 J	0.2 UJ	0.2 UJ	0.2 UJ	0.27 UJ
Arsenic	0.58 J	0.27 U	0.27 U	0.27 U	0.27 U	0.39 J	0.27
Barium	13.8	2.7	2.1	4.5	0.32 U	19.5	0.69 U
Beryllium	0.079 J	0.012 J	0.01 U	0.016 J	0.015 U	0.11 J	0.017 U
Cadmium	0.021 U	0.021 U	0.021 U	0.02 U	0.021 U	0.021 U	0.021 U
Calcium	56.2 J	72.1 J	58.6 J	176	18 U	369	18.3 U
Chromium	2.7	1.2	0.7	1.3	0.3 U	6.9	0.45 U
Cobalt	0.13 J	0.084 U	0.083 U	0.11 J	0.083 U	0.37 J	0.083 U
Copper	0.96	0.44 J	4.9	0.89	0.16 U	0.98	0.16 U
Iron	1400	346	298	412	34.8	2290	94.5
I.ead	6.1	1.7	5.5 J	2.4	0.57 J	5.2 J	1.4 J
Magnesium	68.9 J	25.8 J	22.2 J	30.1 J	5.2 U	222	7.7 U
Manganese	8.6	2	2 J	8	0.49 U	3.7	0.64 J
Mercury	0.096 J	0.06 Ј	0.038 U	0.058 J	0.017 U	0.023 J	0.02 J
Nickel	0.58	0.094 U	0.15 J	0.44 J	0.093 U	1.3	0.094 U
Potassium	39.7 J	23.6 J	19.4 J	24.7 J	4.7 U	212 J	5 U
Sclenium	0.23 U	0.23 U	0.23 UJ	0.23 U	0.23 U	0.23 U	0.23 U
Silver	0.085 U	0.084 U	0.083 U	0.082 U	0.083 U	0.085 U	0.083 U
Sodium	85.1 U	85.7 U	52.9 U	78.2 U	26.5 U	25.3 U	31.8 U
Thallium	0.35 UJ	0.34 UJ	0.34 UJ	0.34 UJ	0.34 UJ	0.35 UJ	0.34 UJ
Vanadium	3.8	1.6 J	1.2 J	2.7	0.16 Ј	10.5	0.54 J
Zinc	2.8 U	1.6 U	8.5	2 U	0.67 U	3.2	0.66 U

U - Not Detected

mg/kg = Milligrams per Kilogram

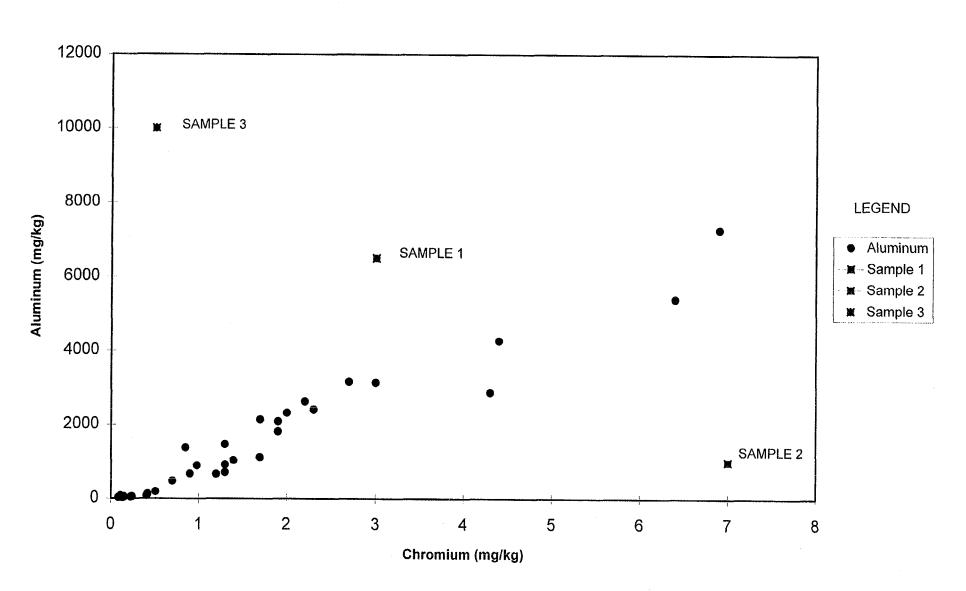
APPENDIX E.2 STATISTICS FOR INORGANICS IN FINE SAND SURFACE SOILS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

	Minimum Non-Detect	Maximum Non-Detect	Minimum Detected	Maximum Detected	Percent Non-Detect	Percent Detected	Frequency of Detection	Arithmatic Mean Positive Detects	Median Positive Detects	Arithmatic Mean Half Non-Detects
METALS (mg/kg)										
Aluminum	0	0	29.4	8530	0%	100%	39/39	1951.28	1460	1951.2769
Antimony	0.19 U	0.42 UJ	0.25 J	0.9 J	64%	36%	14/39	0.39	0.33	0.2147
Arsenic	0.25 U	0.35 U	0.27	0.85 J	69%	31%	12/39	0.52	0.44	0.2554
Barium	0.28 U	0.69 U	0.73 J	24	10%	90%	35/39	6.44	4.6	5.8012
Beryllium	0.01 U	0.11 U	0.012 J	0.11 J	38%	62%	24/39	0.05	0.04	0.0364
Cadmium	0.019 U	0.027 U	0.037 J	0.11 Ј	90%	10%	4/39	0.07	0.06	0.0163
Calcium	11.8 U	46.2 U	12.4 J	105000	18%	82%	32/39	4146.04	134.5	3404.6987
Chromium	0.17 U	0.45 U	0.24 J	9.7	15%	85%	33/39	2.63	1.9	2.2501
Cobalt	0.076 t	0.11 U	0.089 J	0.4 J	54%	46%	18/39	0.2	0.17	0.1151
Copper	0.16 U	U	0.29 J	38.5	26%	74%	29/39	3.42	1.2	2.6094
Iron	0	0	26.3	5000	0%	100%	39/39	974.64	707	974.6436
Lead	0	0	0.45	38.5 J	0%	100%	39/39	5.24	3.4	5.2369
Magnesium	5.2 U	14 U	9.8 J	1610	18%	82%	32/39	127.98	54.85	105.7846
Manganese	0.29	2.3 U	0.64 J	25.9	13%	87%	34/39	6.43	4.75	5.6647
Mercury	0.017 U	0.08 U	0.02 J	0.12 J	51%	49%	19/39	0.05	0.05	0.0366
Nickel	J 880.0	0.64 U	0.11 J	1.8	31%	69%	27/39	0.72	0.58	0.5227
Potassium	3.8 U	21.9 U	5.8 J	263 J	23%	77%	30/39	56.25	34.3	44.5769
Selenium	0.21 U	0.28 U	0.25 J	0.63	77%	23%	9/39	0.41	0.36	0.1838
Silver	0.076	U 11.0	0.11 J	0.11 J	97%	3%	1/39	0.11	0.11	0.0443
Sodium	25.3 U	127 U	307	307	97%	3%	1/39	307	307	41.4308
Thallium	0.32 U	J 0.45 UJ	0	0	100%	0%	0/39	0	0	0.1755
Vanadium	1.5 E	2.2 U	0.14 J	13.4	5%	95%	37/39	3.11	2.3	2.9959
Zinc	0.24 U	2.8 U	0.36 J	73.9	38%	62%	24/39	8.27	3.4	5.374

APPENDIX E.2 STATISTICS FOR INORGANICS IN FINE SAND SURFACE SOILS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

	Standard Deviation	Upper 95% Confidence Level	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	Degree of Freedom	H Statistic	Log Upper 95% Confidence Level	Location of Maximum Detect
METALS (mg/kg)								
Aluminum	2059.1468	2507.1818	6.7	1.7	38	3.355	8756.887	BASE-BG04-00
Antimony	0.1705	0.2607	-1.76	0.63	38	2.075	0.2601	BASE-BG23-00
Arsenic	0.2077	0.3115	-1.59	0.62	38	2.075	0.3043	BASE-BG22-00
Barium	5.4781	7.2801	1.21	1.26	38	3.008	13.7358	BASE-BG31-00
Beryllium	0.0305	0.0446	-3.73	1	38	2.383	0.0579	BASE-BG11-00,BASE-BG49-00
Cadmium	0.0193	0.0215	-4.37	0.56	38	1.988	0.0178	BASE-BG11-00
Calcium	16933.1532	7976.1175	4.77	1.98	38	3.715	2783.5166	BASE-BG11-00
Chromium	2.3828	2.8934	0.2	1.26	38	3.008	5.0425	BASE-BG11-00
Cobalt	0.101	0.1424	-2.48	0.78	38	2.171	0.1497	BASE-BG04-00
Copper	6.6091	4.3936	-0.1	1.31	38	3.008	4.0486	BASE-BG35-00
Iron	1093.7079	1269.9103	6.14	1.45	38	3.008	2681.8206	BASE-BG04-00
Lead	7.4653	7.2523	1.18	0.93	38	2.383	7.2052	BASE-BG11-00
Magnesium	258.1513	175.4773	3.64	1.41	38	3.008	205.192	BASE-BG11-00
Manganese	5.8706	7.2496	1.15	1.24	38	2.682	11.6883	BASE-BG11-00
Mercury	0.0239	0.0431	-3.48	0.59	38	1.988	0.0444	BASE-BG31-00
Nickel	0.5069	0.6595	-1.28	1.28	38	3.008	1.1877	BASE-BG23-00
Potassium	56.1883	59.746	3.17	1.21	38	2.682	83.3406	BASE-BG11-00
Selenium	0.1396	0.2215	-1.87	0.54	38	1.988	0.2115	BASE-BG11-00,BASE-BG20-00
Silver	0.0113	0.0474	-3.13	0.17	38	1.734	0.0463	BASE-BG25-00
Sodium	45.3844	53.6832	3.52	0.55	38	1.988	47.0093	BASE-BG11-00
Thallium	0.0139	0.1793	-1.74	0.07	38	1.695	0.1791	
Vanadium	3.0887	3.8298	0.56	1.15	38	2.682	5.5756	BASE-BG04-00
Zinc	12.3206	8.7002	0.66	1.38	38	3.008	9.8619	BASE-BG42-00

APPENDIX E.2 STATISTICS FOR INORGANICS IN FINE SAND SURFACE SOILS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

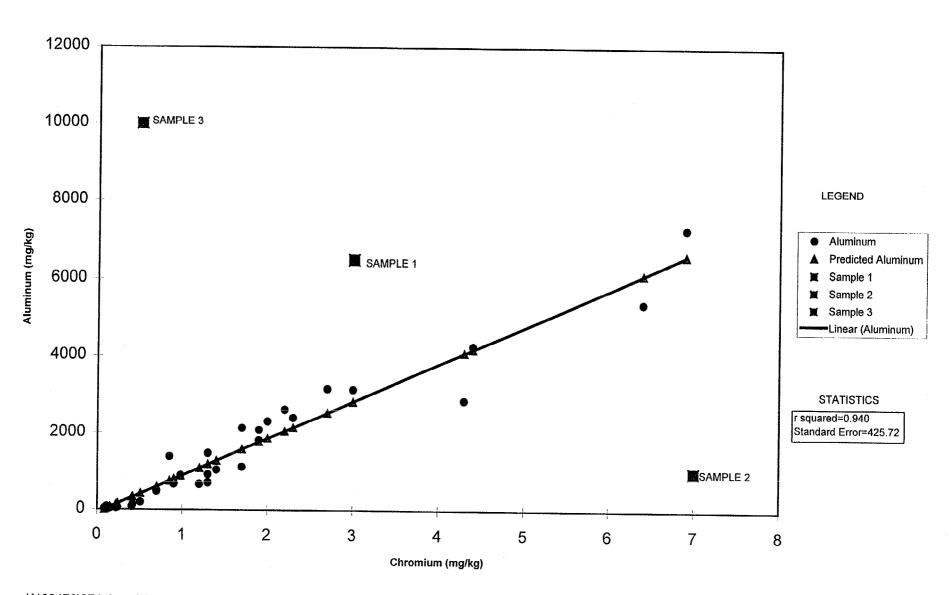

	Lognormal Distribution		Norn	Normal Distribution				
	W-Value	Quantile	Truc/False	W-Value	Quantile	True/False	Sample Count	Frequency of Detection
NAMED AND A COLUMN								
METALS (mg/kg)	0.00000151	0.020	PALCE	0.022702110	0.020	DAY OF	20	20.00
Aluminum	0.869860151	0.939	FALSE	0.823783118	0.939	FALSE	39	39/39
Antimony	0.838257924	0.939	FALSE	0.730609284	0.939	FALSE	39	14/39
Arsenic	0.721066286	0.939	FALSE	0.656915057	0.939	FALSE	39	12/39
Barium	0.924290787	0.939	FALSE	0.849204019	0.939	FALSE	39	35/39
Beryllium	0.91603916	0.939	FALSE	0.873027677	0.939	FALSE	39	24/39
Cadmium	0.45952313	0.939	FALSE	0.380029175	0.939	FALSE	39	4/39
Calcium	0.895502608	0.939	FALSE	0.215071375	0.939	FALSE	39	32/39
Chromium	0.943356905	0.939	TRUE	0.790385878	0.939	FALSE	39	33/39
Cobalt	0.819799888	0.939	FALSE	0.759122863	0.939	FALSE	39	18/39
Copper	0.954337466	0.939	TRUE	0.372423452	0.939	FALSE	39	29/39
Iron	0.921212119	0.939	FALSE	0.791357262	0.939	FALSE	39	39/39
Lead	0.95301944	0.939	TRUE	0.505404769	0.939	FALSE	39	39/39
Magnesium	0.969388197	0.939	TRUE	0.368306228	0.939	FALSE	39	32/39
Manganese	0.95934032	0.939	TRUE	0.807946312	0.939	FALSE	39	34/39
Mercury	0.979526993	0.939	TRUE	0.834634562	0.939	FALSE	39	19/39
Nickel	0.870415366	0.939	FALSE	0.842284302	0.939	FALSE	39	27/39
Potassium	0.972283997	0.939	TRUE	0.684846594	0.939	FALSE	39	30/39
Selenium	0.650193119	0.939	FALSE	0.59073106	0.939	FALSE	39	9/39
Silver	0.508915188	0.939	FALSE	0.380773035	0.939	FALSE	39	1/39
Sodium	0.873712877	0.939	FALSE	0.403127885	0.939	FALSE	39	1/39
Thallium	0.807567065	0.939	FALSE	0.7789955	0.939	FALSE	39	0/39
Vanadium	0.967105034	0.939	TRUE	0.802759422	0.939	FALSE	39	37/39
Zinc	0.984163324	0.939	TRUE	0.414659311	0.939	FALSE	39	24/39

APPENDIX E GRAPH 1

BASE BACKGROUND SURFACE SOILS - FINE SAND

Scatter Plot

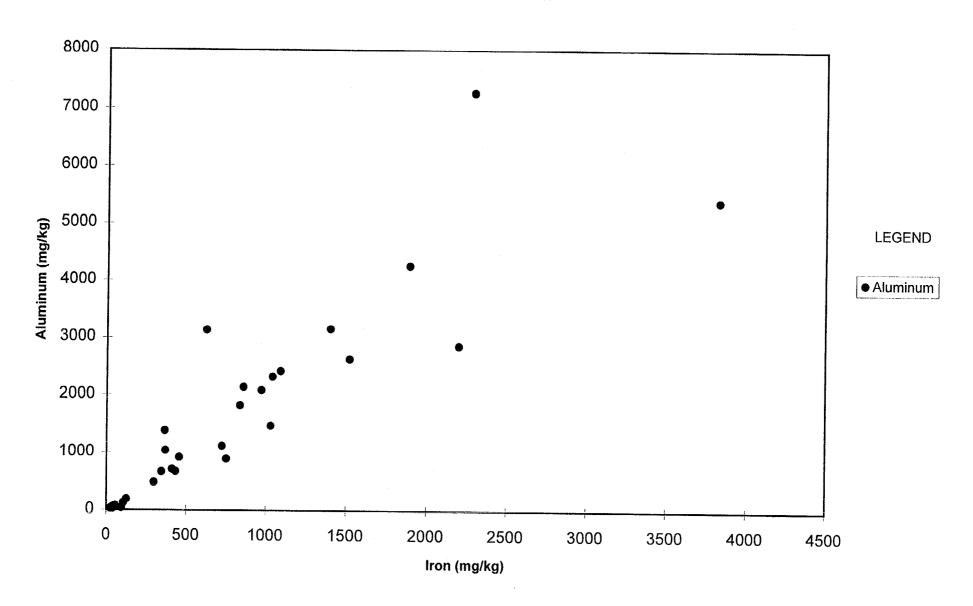
Aluminum vs Chromium



APPENDIX E GRAPH 2

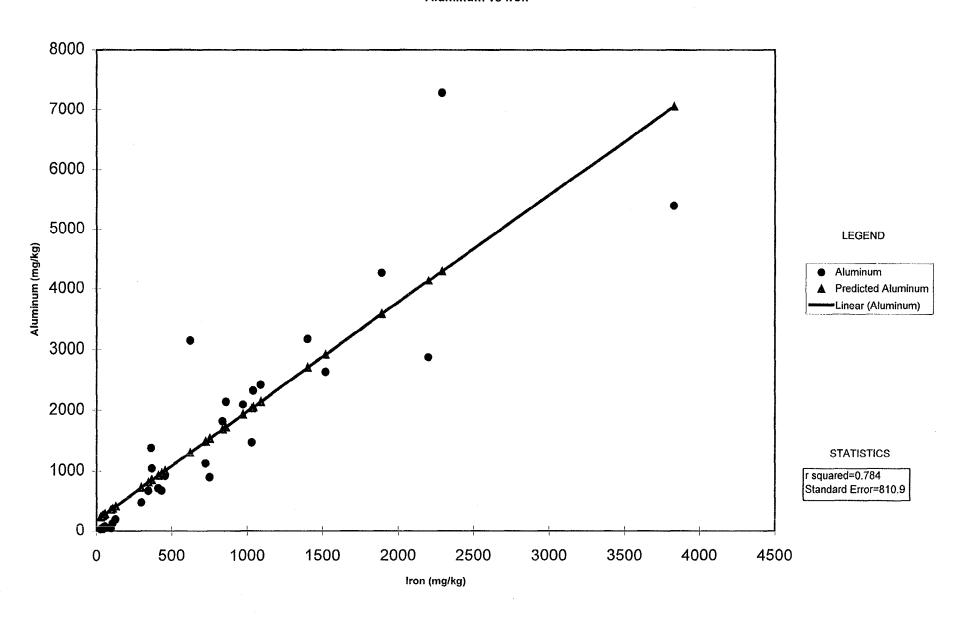
BASE BACKGROUND SURFACE SOILS - FINE SAND

Linear Regression


Aluminum vs Chromium

APPENDIX E GRAPH 3

BASE BACKGROUND SURFACE SOILS - FINE SAND


Scatter Plot
Aluminum vs Iron

APPENDIX E GRAPH 4

BASE BACKGROUND SURFACE SOILS - FINE SAND

Linear Regression Aluminum vs Iron

APPENDIX F ANALYTICAL DATA AND STATISTICS FOR LOAMY SURFACE SOILS

APPENDIX F.1
ANALYTICAL RESULTS FOR LOAMY SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG01-00	BASE-BG07-00	BASE-BG08-00	BASE-BG12-00	BASE-BG13-00	BASE-BG14-00	BASE-BG15-00	BASE-BG16-00
SAMPLE DATE	7/11/00	7/13/00	7/16/00	7/11/00	7/11/00	7/12/00	7/16/00	7/13/00
METALS (mg/kg)								
Aluminum	2040	2170	3680 J	9130	5390	3770	4730 J	4820
Antimony	0.22 UJ	0.2 U	0.32 Ј	0.44 UJ	0.49 J	0.23 UJ	0.3 J	0.34 J
Arsenic	0.28 U	0.27 U	0.62 J	0.73 J	0.49 J	0.3 U	0.3 U	1
Barium	3.9	7.3	16.7	19.6	9.2	12	10	20
Beryllium	0.062 U	0.029 J	0.077 J	0.14 J	0.09 U	0.098 U	0.1 J	0.072 Ј
Cadmium	0.021 U	0.021 U	0.023 U	0.033 U	0.022 U	0.023 U	0.023 U	0.056 J
Calcium	28.4 U	299	11500	200	75.3 J	344	44.3 J	8720
Chromium	2.7	2.3	4.6	9.6	6.1 J	3.3	5	7.4
Cobalt	0.086 U	0.083 U	0.44 J	0.45 J	0.31 J	0.1 J	0.51 J	0.29 Ј
Copper	0.33 J	0.84 U	2	2.2	1.6	0.57 J	1.6	5.8
Iron	251	1300	2410 J	6050	7900	2910	1220 J	3940
Lead	3.2 J	12.1 J	8.2 J	9.9 J	5.4 J	5.1 J	7.9 J	26.8 J
Magnesium	25.9 J	45.4 J	286	241	130	114 J	131	330
Manganese	0.81 J	1.3 J	49	7.3	3.1	5.3	2.5	13.6 J
Mercury	0.041	0.056 U	0.052	0.06	0.018 U	0.032 J	0.061	0.26 U
Nickel	0.31 J	0.42 J	1.2	1.7	0.83	0.49 J	0.72	1.4
Potassium	46.4 J	35.9 J	139	168 J	162	61.7 J	124	102
Selenium	0.24 U	0.23 UJ	0.43 J	0.73 J	0.38 J	0.42 J	0.8	0.22 UJ
Silver	0.086 U	0.083 U	0.092 U	0.13 U	0.097 J	0.093 U	0.092 U	1.1
Sodium	30.8 U	73.1 U	129 U	46.9 U	39.8 U	38.5 U	102 U	62.2 U
Thallium	0.35 UJ	0.34 UJ	0.38 UJ	0.55 UJ	0.36 UJ	0.38 UJ	0.38 UJ	0.33 UJ
Vanadium	3.3	4.1	7.6	16.6	12.4 J	4.8	5.6	9.1
Zinc	0.9 U	3.5	6	4.8	4.3	2.8	1 J	25.2

U - Not Detected

mg/kg - Milligrams per Kilogram

J - Resultant concentration is estimated

APPENDIX F.1 ANALYTICAL RESULTS FOR LOAMY SURFACE SOILS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

SAMPLE ID	BASE-BG19-00	BASE-BG29-00	BASE-BG40-00
SAMPLE DATE	7/14/00	7/12/00	7/16/00
METALS (mg/kg)			
Aluminum	5680	2070	17600 J
Antimony	0.2 U	0.2 UJ	0.6 J
Arsenic	0.83 J	0.27 U	1.3 J
Barium	15.2	5.9	15.7
Beryllium	0.075 Ј	0.038 U	0.53 J
Cadmium	0.021 U	0.021 U	0.033 U
Calcium	726	4210	80.5 J
Chromium	7.2	2.8	12.6
Cobalt	0.21 J	0.1 J	0.36 J
Copper	1.5	1.6	1.4
Iron	3280	1660	12200 J
Lead	11.7	3.8 J	8.7 J
Magnesium	193	92 J	226
Manganese	5.4 J	28	6.3
Mercury	0.1 U	0.027 UJ	0.11
Nickel	0.96	0.73 U	1.5
Potassium	135	58.9 J	133 J
Selenium	0.28 J	0.23 U	3.4
Silver	0.084 U	0.083 U	0.21 J
Sodium	82.3 U	50.8 U	159 U
Thallium	0.35 UJ	0.34 UJ	0.54 UJ
Vanadium	11.1	4.8	26.2
Zinc	5.2	5.7	2.1 J

Notes:

U - Not Detected

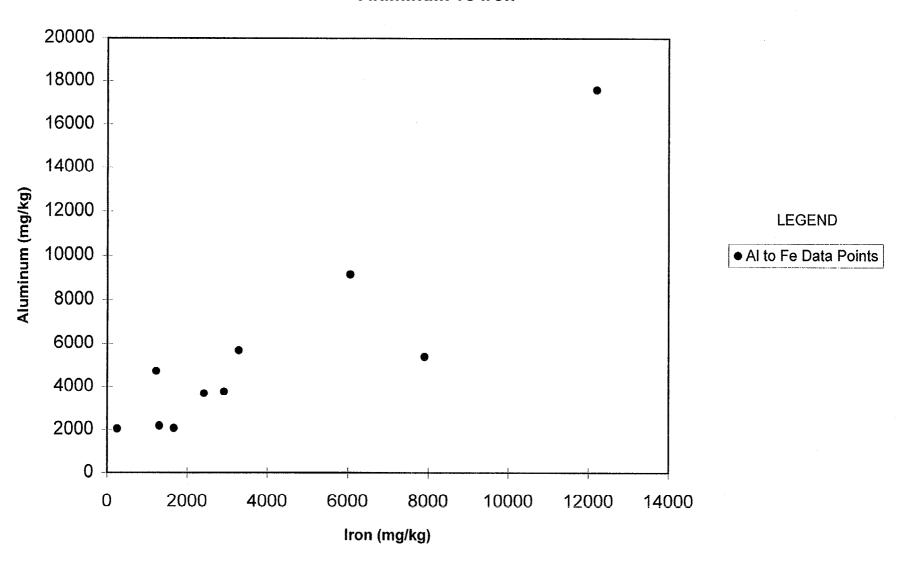
mg/kg - Milligrams per Kilogram

J - Resultant concentration is estimated

APPENDIX F.2
STATISTICS FOR INORGANICS IN LOAMY SURFACE SOILS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

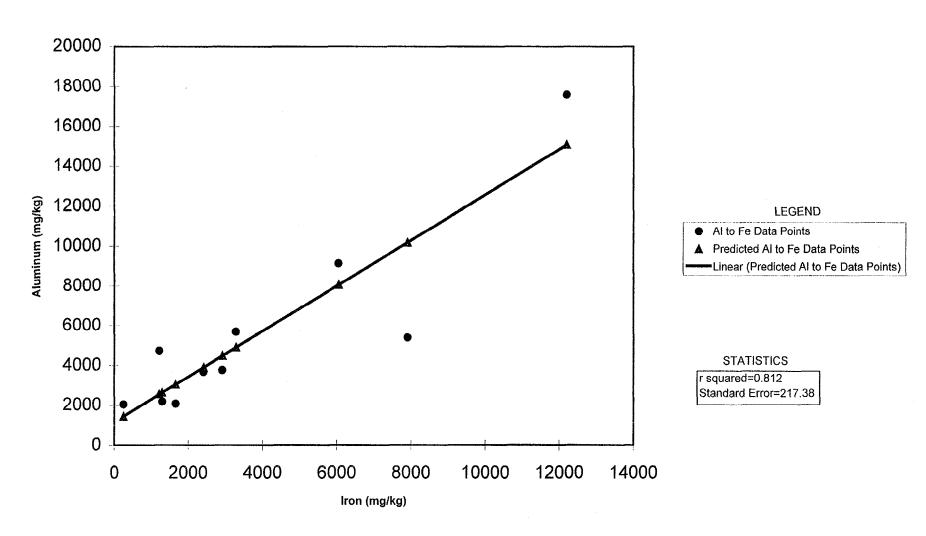
	Minimum Non-Detect	Maximum Non-Detect	Minimum Detected	Maximum Detected	Percent Non-Detect	Percent Detected	Frequency of Detection	Arithmatic Mean Positive Detects	Median Positive Detects
METALS (mg/kg)									
Aluminum	0	0	2040	17600 J	0%	100%	11/11	5552.7273	4730
Antimony	0.2 UJ	0.44 UJ	0.3 J	0.6 J	55%	45%	5/11	0.41	0.34
Arsenic	0.27 U	0.3 U	0.49 J	1.3 J	45%	55%	6/11	0.8283	0.78
Barium	0	0	3.9	20	0%	100%	11/11	12.3182	12
Beryllium	0.038 U	0.098 U	0.029 J	0.53 J	36%	64%	7/11	0.1461	0.077
Cadmium	0.021 U	0.033 U	0.056 J	0.056 J	91%	9%	1/11	0.056	0.056
Calcium	28.4 U	28.4 U	44.3 J	11500	9%	91%	10/11	2619.91	321.5
Chromium	0	0	2.3	12.6	0%	100%	11/11	5.7818	5
Cobalt	0.083 U	0.086 U	0.1 J	0.51 J	18%	82%	9/11	0.3078	0.31
Copper	0.84 U	0.84 U	0.33 J	5.8	9%	91%	10/11	1.86	1.6
Iron	0	0	251	12200 J	0%	100%	11/11	3920.0909	2910
Lead	. 0	0	3.2 J	26.8 J	0%	100%	11/11	9.3455	8.2
Magnesium	0	0	25.9 J	330	0%	100%	11/11	164.9364	131
Manganese	0	0	0.81 J	49	0%	100%	11/11	11.1464	5.4
Mercury	0.018 U	0.26 U	0.032 J	0.11	45%	55%	6/11	0.0593	0.056
Nickel	0.73 U	0.73 U	0.31 J	1.7	9%	91%	10/11	0.953	0.895
Potassium	0	0	35.9 J	168 J	0%	100%	11/11	105.9909	124
Selenium	0.22 UJ	0.24 U	0.28 J	3.4	36%	64%	7/11	0.92	0.43
Silver	0.083 U	0.13 U	0.097 J	1.1	73%	27%	3/11	0.469	0.21
Sodium	30.8 U	159 U	0	0	100%	0%	0/11	***	
Thallium	0.33 UJ	0.55 UJ	0	0	100%	0%	0/11		
Vanadium	0	0	3.3	26.2	0%	100%	11/11	9.6	7.6
Zinc	0.9 U	0.9 U	1 J	25.2	9%	91%	10/11	6.06	4.55

APPENDIX F.2 STATISTICS FOR INORGANICS IN LOAMY SURFACE SOILS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

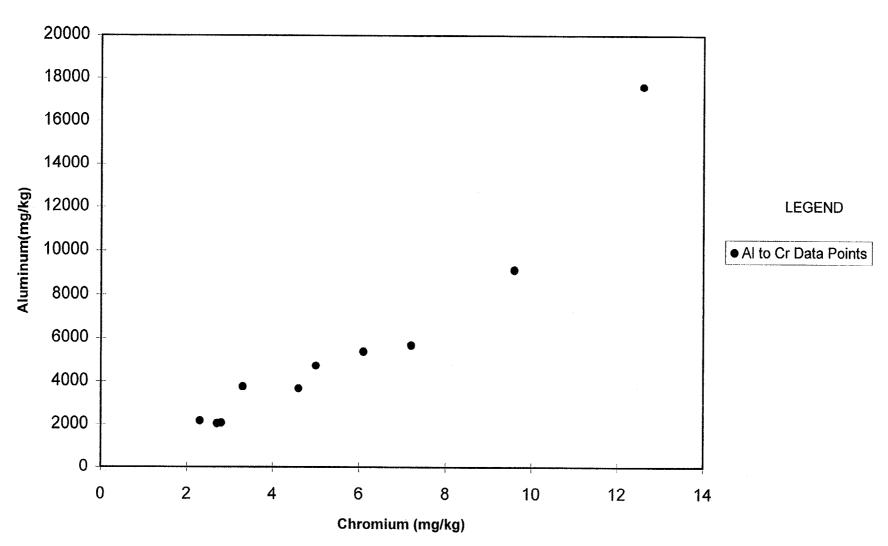

	Arithmatic Mean Half Non-Detects	Standard Deviation	Upper 95% Confidence Level	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	Degree of Freedom	H Statistic	Log Upper 95% Confidence Level	Location of Maximum Detect
METALS (mg/kg)									
Aluminum	5552.7273	4492.0688	8007.5428	8.4053	0.6547	10	2.466	9229.5233	BASE-BG40-00
Antimony	0.2541	0.1737	0.349	-1.5853	0.6917	10	2.466	0.4463	BASE-BG40-00
Arsenic	0.5164	0.4128	0.742	-1.0178	0.9289	10	2.998	1.3421	BASE-BG40-00
Barium	12.3182	5.5083	15.3284	2.3993	0.5269	10	2.314	18.6095	BASE-BG16-00
Beryllium	0.1061	0.1449	0.1853	-2.7076	0.9032	10	2.998	0.2361	BASE-BG40-00
Cadmium	0.016	0.0134	0.0233	-4.293	0.4975	10	2.176	0.0218	BASE-BG16-00
Calcium	2383.0273	4053.8207	4598.3499	5.9409	2.2041	10	6.312	351293.5145	BASE-BG08-00
Chromium	5.7818	3.2323	7.5482	1.615	0.5571	10	2.314	8.8272	BASE-BG40-00
Cobalt	0.2595	0.1712	0.3531	-1.6562	0.9277	10	2.998	0.7072	BASE-BG15-00
Copper	1.7291	1.4864	2.5414	0.2594	0.8179	10	2.81	3.7459	BASE-BG16-00
Iron	3920.0909	3540.755	5855.0346	7.8587	1.0632	10	3.5	14774.2914	BASE-BG40-00
Lead	9.3455	6.5117	12.904	2.062	0.5982	10	2.314	14.5655	BASE-BG16-00
Magnesium	164.9364	98.0362	218.511	4.8812	0.7859	10	2.632	345.2031	BASE-BG16-00
Manganese	11.1464	14.7368	19.1997	1.7378	1.2264	10	3.5	46.8619	BASE-BG08-00
Mercury	0.0533	0.0374	0.0737	-3.1852	0.8027	10	2.81	0.1165	BASE-BG40-00
Nickel	0.8995	0.4913	1.168	-0.2601	0.6035	10	2.466	1.4809	BASE-BG12-00
Potassium	105.9909	47.5669	131.9852	4.5457	0.5424	10	2.314	162.3413	BASE-BG12-00
Selenium	0.6273	0.9509	1.1469	-1.0836	1.0712	10	3.5	1.9655	BASE-BG40-00
Silver	0.1617	0.3152	0.3339	-2.5854	1.0204	10	3.5	0.3924	BASE-BG16-00
Sodium	37.0182	20.501	48.2215	3.4818	0.5277	10	2.314	54.9915	
Thallium	0.1955	0.0391	0.2169	-1.6481	0.1788	10	1.86	0.2172	
Vanadium	9.6	6.8624	13.3501	2.0637	0.6431	10	2.466	15.9904	BASE-BG40-00
Zinc	5.55	6.7748	9.2523	1.2419	1.0397	10	3.5	18.7862	BASE-BG16-00

APPENDIX F.2 STATISTICS FOR INORGANICS IN LOAMY SURFACE SOILS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

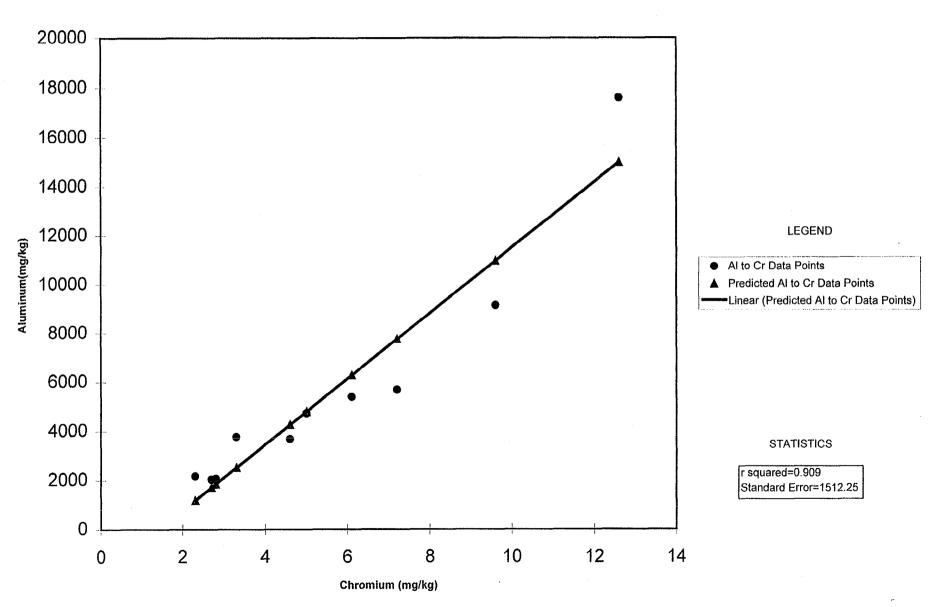
	Lognor	mal Distribution		Norn	nal Distribution		Sample	Frequency
	W-Value	Quantile	True/False	W-Value	Quantile	Truc/False	Count	of Detection
METALS (mg/kg)								
Aluminum	0.921964616	0.85	TRUE	0.733521465	0.85	FALSE	11	11/11
Antimony	0.858087963	0.85	TRUE	0.850292468	0.85	TRUE	11	5/11
Arsenic	0.819542796	0.85	FALSE	0.860076317	0.85	TRUE	11	6/11
Barium	0.929090568	0.85	TRUE	0.949554014	0.85	TRUE	11	11/11
Beryllium	0.931890793	0.85	TRUE	0.566673576	0.85	FALSE	11	7/11
Cadmium	0.587418585	0.85	FALSE	0.465584857	0.85	FALSE	11	1/11
Calcium	0.941625372	0.85	TRUE	0.651337507	0.85	FALSE	11	10/11
Chromium	0.957339123	0.85	TRUE	0.911302648	0.85	TRUE	11	11/11
Cobalt	0.86500979	0.85	TRUE	0.916965035	0.85	TRUE	11	9/11
Copper	0.905838459	0.85	TRUE	0.728758087	0.85	FALSE	- 11	10/11
Iron	0.955883864	0.85	TRUE	0.857235908	0.85	TRUE	11	11/11
Lead	0.96197756	0.85	TRUE	0.777751339	0.85	FALSE	11	11/11
Magnesium	0.915817461	0.85	TRUE	0.962457981	0.85	TRUE	11	11/11
Manganese	0.976713378	0.85	TRUE	0.701098163	0.85	FALSE	11	11/11
Mercury	0.94940065	0.85	TRUE	0.895376361	0.85	TRUE	11	6/11
Nickel	0.931491783	0.85	TRUE	0.925235827	0.85	TRUE	11	10/11
Potassium	0.873668262	0.85	TRUE	0.904315009	0.85	TRUE	11	11/11
Selenium	0.888399708	0.85	TRUE	0.566302867	0.85	FALSE	11	7/11
Silver	0.660386241	0.85	FALSE	0.444164474	0.85	FALSE	11	3/11
Sodium	0.964208293	0.85	TRUE	0.892188747	0.85	TRUE	11	0/11
Thallium	0.727314212	0.85	FALSE	0.687466351	0.85	FALSE	11	0/11
Vanadium	0.959411341	0.85	TRUE	0.835120417	0.85	FALSE	11	11/11
Zinc	0.938134163	0.85	TRUE	0.612513607	0.85	FALSE	11	10/11


APPENDIX F GRAPH 1

Scatter Plot Aluminum vs Iron


APPENDIX F GRAPH 2

Linear Regression Aluminum vs Iron


APPENDIX F GRAPH 3

Scatter Plot Aluminum vs Chromium

APPENDIX F GRAPH 4

Linear Regression
Aluminum vs Chromium

APPENDIX G ANALYTICAL DATA AND STATISTICS FOR SUBSURFACE SANDS

APPENDIX G.1

ANALYTICAL RESULTS FOR SUBSURFACE SANDS

BASE BACKGROUND STUDY

MCB, CAMP LEJEUNE, NORTH CAROLINA

CTO-0371

SAMPLE ID SAMPLE DATE	BASE-BG06-05 7/13/00	BASE-BG08-05 7/16/00	BASE-BG09-05 7/14/00	BASE-BG10-03 7/13/00	BASE-BG12-04 7/11/00	BASE-BG16-04 7/13/00	BASE-BG18-02 7/14/00	BASE-BG19-04 7/14/00	BASE-BG20-01 7/16/00
METALS (mg/kg)									
Aluminum	3330	1570 J	7640	1410	1740	1200	260 J	4620	4070 J
Antimony	0.2 UJ	0.41 J	0.22 U	0.35 J	0.21 UJ	0.23 U	0.2 UJ	0.21 U	0.23 UJ
Arsenic	1.1	0.3 U	0.3 U	0.27 U	0.29 U	0.32 U	0.28 U	0.88 J	0.31 U
Barium	18.2	3.4	7.9	2	3.9	3.2	1.2	5.3	10.4
Beryllium	0.069 U	0.012 U	0.097 J	0.028 Ј	0.035 U	0.024 J	0.011 U	0.058 J	0.062 J
Cadmium	0.021 U	0.023 U	0.023 U	0.021 U	0.022 U	0.024 U	0.022 U	0.022 U	0.024 U
Calcium	61.3 J	22.8 J	39.4 U	63.2 J	29.7 U	73.6 J	12.7 J	26.8 U	87.2 J
Chromium	5.2	3.2	7.5	1.6	1.8	1.6	0.83	5.3	7.8
Cobalt	0.1 J	0.092 U	0.35 J	0.083 U	0.11 J	0.098 U	0.087 U	0.14 Ј	0.21 J
Copper	1.4	0.48 U	0.72 U	0.3 U	0.24 J	0.31 U	0.43 U	0.7 U	0.95
Iron	2410	1130 J	1330	356	329	481	121 J	1580	840 J
Lead	3 J	2.5 J	5.1	1.9 J	1.9 J	1.8 J	1.3 J	3.3	5.1 J
Magnesium	78.1 J	63.3 J	214	46.9 J	44.7 J	38.5 J	16.8 Ј	130	144
Manganese	1.4	2	3.7 J	1.3 Ј	2	1.6 J	1.9	2 J	4.7
Mercury	0.028 UJ	0.029 J	0.055 U	0.027 U	0.022 J	0.027 U	0.019 U	0.047 U	0.031 J
Nickel	0.53 U	0.1 U	1.2	0.2 Ј	0.37 Ј	0.34 J	0.097 U	0.55 J	0.39 J
Potassium	66 J	57.9 J	292	32 J	53.6 J	31.8 J	17.6 J	130	176
Selenium	0.27 J	0.4 J	0.25 U	0.23 UJ	0.24 U	0.27 UJ	0.24 U	0.26 J	0.44 J
Silver	0.082 U	0.092 U	0.091 U	0.083 U	0.088 U	0.098 U	0.087 U	0.089 U	0.095 U
Sodium	49.6 U	102 U	51.2 U	64.6 U	34.7 U	71.3 U	80.2 U	44.6 U	116 U
Thallium	0.34 UJ	0.38 UJ	0.38 UJ	0.34 UJ	0.36 UJ	0.4 UJ	0.36 UJ	0.37 UJ	0.39 UJ
Vanadium	7.4	7.7	6.3	1.7 J	1.9 J	2.3 J	0.75 J	7.6	13.7
Zinc	2.4 U	0.28 U	4.2	1.2 U	1.6 U	1.3 U	0.26 U	1.5 J	0.33 J

U - Not Detected

mg/kg - Milligrams per Kilogram

I - Resultant Concentration is Estimated

APPENDIX G.1
ANALYTICAL RESULTS FOR SUBSURFACE SANDS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID SAMPLE DATE	BASE-BG21-02 7/15/00	BASE-BG22-04 7/14/00	BASE-BG23-01 7/11/00	BASE-BG25-01 7/14/00	BASE-BG26-03 7/14/00	BASE-BG27 7/14/00	BASE-BG30-01 7/12/00	BASE-BG31-04 7/16/00	BASE-BG33-02 7/14/00
METALS (mg/kg)									
Aluminum	8640	5810 J	9900	1340	3630	4640 J	3800	407	1100 Ј
Antimony	0.22 U	0.31 J	0.31 J	0.2 J	0.32 Ј	0.4 J	0.22 UJ	0.21 UJ	0.26 J
Arsenic	0.3 U	0.28 U	0.92 J	0.27 U	0.28 U	0.34 J	0.28 U	0.28 U	0.32 U
Barium	7.1	7.4	13.9	4	6.8	15.3	1.8	1.4	1.6
Beryllium	0.081 J	0.07 J	0.095 U	0.028 J	0.049 J	0.07 J	0.047 U	0.011 U	0.012 U
Cadmium	0.023 U	0.022 U	0.022 U	0.021 U	0.022 U	0.021 U	0.022 U	0.022 U	0.025 U
Calcium	38.5 U	41.6 J	499	83.8 J	44.2 U	71.3 J	14.5 U	21.3 J	9.1 U
Chromium	9.4	7.4	9.6 J	1.5	4.2	4.5	6.1	1	1.3
Cobalt	0.74	0.22 J	0.84	0.084 U	0.2 J	0.6	0.087 U	0.087 U	0.16 Ј
Copper	0.66 U	0.94 U	3.1	0.25 J	2.8	1.7	0.58	0.47 J	0.72 U
Iron	1770	877 J	4600	953	1530	3440 J	93.1	222	485 J
Lead	6	4.1 J	4 J	1.9	2.8	3.5 J	3.6 Ј	1.6	1.1 J
Magnesium	193	166	197	65.5 J	101 Ј	216	16.9 J	22.6 J	39 J
Manganese	5.9	2.8	4.5	2.2	2.4 J	7.1	0.75 J	1 J	2.3
Mercury	0.061	0.018 U	0.024 J	0.025 J	0.054 U	0.022 Ј	0.039	0.042 J	0.021 Ј
Nickel	1.9	0.37 J	3.6	0.44 J	0.95	1.6	0.26 J	0.098 U	0.64
Potassium	190	235	189	33.4 J	64.2 J	121	28.5 J	22.6 J	22.4 J
Selenium	0.25 U	0.24 J	0.24 U	0.23 U	0.24 U	0.32 J	0.31 J	0.24 U	0.29 J
Silver	0.092 U	0.086 U	0.087 U	0.084 U	0.087 U	0.085 U	0.087 U	0.087 U	0.1 U
Sodium	83.9 U	87.2 U	40.7 U	89.6 U	55 U	65.2 U	28.7 U	72.3 U	84.3 U
Thallium	0.38 UJ	0.36 UJ	0.36 UJ	0.34 UJ	0.36 UJ	0.35 UJ	0.36 UJ	0.36 U	0.41 UJ
Vanadium	7.1	8.6	11.7 J	2.4	5.4	8.9	3	1.1 J	1.4 J
Zinc	3.4	0.84 J	5.1	1.3 U	2.5	1.8 J	0.84 U	1.3 U	0.3 U

U - Not Detected

mg/kg - Milligrams per Kilogram

J - Resultant Concentration is Estimated

APPENDIX G.1

ANALYTICAL RESULTS FOR SUBSURFACE SANDS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID SAMPLE DATE	BASE-BG34-03 7/15/00	BASE-BG35-01 7/16/00	BASE-BG36-01 7/15/00	BASE-BG37 7/16/00	BASE-BG38-01 7/16/00	BASE-BG39-01 7/16/00	BASE-BG42-01 7/16/00	BASE-BG43-03 7/16/00	BASE-BG44-03 7/16/00
METALS (mg/kg)									
Aluminum	2200	1210 J	9670	3720 J	372	2470 J	3500	1620	6450
Antimony	0,28 Ј	0.23 J	0.2 U	0.22 UJ	0.23 UJ	0.27 J	0.22 UJ	0.2 UJ	0.26 UJ
Arsenic	0.27 U	0.28 U	1.4	0.3 U	0.32 U	0.31 U	0.37 J	0.27 U	0.3 U
Barium	4	3.2	12.7	4.2	0.67 J	4	5.9	1.8	8
Beryllium	0.038 J	0.015 J	0.068 J	0.012 U	0.012 U	0.013 J	0.054 J	0.01 U	0.04 Ј
Cadmium	0.021 U	0.021 U	0.021 U	0.023 U	0.025 U	0.024 U	0.023 U	0.021 U	0.023 U
Calcium	44.2 U	112	66.7 J	29.2 J	41.6 J	28 J	159	28.3 J	42.7 J
Chromium	2.5	1.4	13.2	4.4	1.2	2.7	2.2	1.7	7.1
Cobalt	0.24 J	0.085 U	1	0.23 J	0.098 U	0.14 J	0.092 U	0.11 J	0.26 J
Copper	0.53 U	0.67	1 U	0.43 U	0.23 Ј	0.44 U	3.3	1.2	0.75
Iron	624	715 J	4310	1380 J	81.5	626 J	1120	611	1720
Lead	1.4	1.7 J	5.2	2.6 J	1.6	2.2 J	3.5	1.5	3.2
Magnesium	86.3 J	54.8 J	209	106 J	13.5 J	87.1 J	87 J	30.1 J	167
Manganese	3.9 J	2.7	4.2 J	2	1.1 J	1.8	4.2	1.3	2.6
Mercury	0.053 U	0.025 J	0.081 U	0.026 J	0.06 J	0.021 J	0.061 J	0.055 J	0.054 J
Nickel	0.66	0.096 U	3	0.94	0.11 U	0.12 J	0.52 J	0.71	0.8
Potassium	51.1 J	37.2 Ј	124	66.9 J	16 J	44.8 J	31 J	22.4 J	121 J
Selenium	0.23 U	0.24 U	0.46 Ј	0.47 J	0.27 U	0.26 U	0.25 U	0.23 U	0.25 U
Silver	0.082 U	0.085 U	0.1 J	0.093 U	0.098 U	0.094 U	0.092 U	0.083 U	0.092 U
Sodium	64.7 U	101 U	57.5 U	97 U	92 U	80.1 U	90.3 U	80.8 U	98.7 U
Thallium	0.34 UJ	0.35 UJ	0.35 UJ	0.38 UJ	0.41 UJ	0.39 UJ	0.38 UJ	0.34 UJ	0.38 UJ
Vanadium	2.3	1.4 J	11.9	4.6	0.6 Ј	2.6	2 Ј	1.7 Ј	7.1
Zinc	1,1 J	0.26 U	2.3	0.28 U	2 U	0.28 U	7.9	2.1 U	4.2

U - Not Detected

mg/kg - Milligrams per Kilogram

J - Resultant Concentration is Estimated

APPENDIX G.1 ANALYTICAL RESULTS FOR SUBSURFACE SANDS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

BASE-BG48-01	BASE-BG50-01
7/12/00	7/12/00
3640	4680
0.4 UJ	0.35 UJ
0.28 U	0.3 U
1.8	3.3
0.041 U	0.035 U
0.022 U	0.023 U
21.3 U	16.9 U
6.1	6.1
0.086 U	0.41 J
0.52 Ј	0.17 U
251	1160
3.4 J	2.8 J
28.7 J	58.6 J
1.1	3.7
0.044	0.042
0.51 J	2
34.3 J	46.4 J
0.32 Ј	0.25 U
0.086 U	0.092 U
37.1 U	33.5 U
0.36 UJ	0.38 UJ
3	6.4
1.5 U	1.9 U
	7/12/00 3640 0.4 UJ 0.28 U 1.8 0.041 U 0.022 U 21.3 U 6.1 0.086 U 0.52 J 251 3.4 J 28.7 J 1.1 0.044 0.51 J 34.3 J 0.32 J 0.086 U 37.1 U 0.36 UJ 3

Notes: U - Not Detected

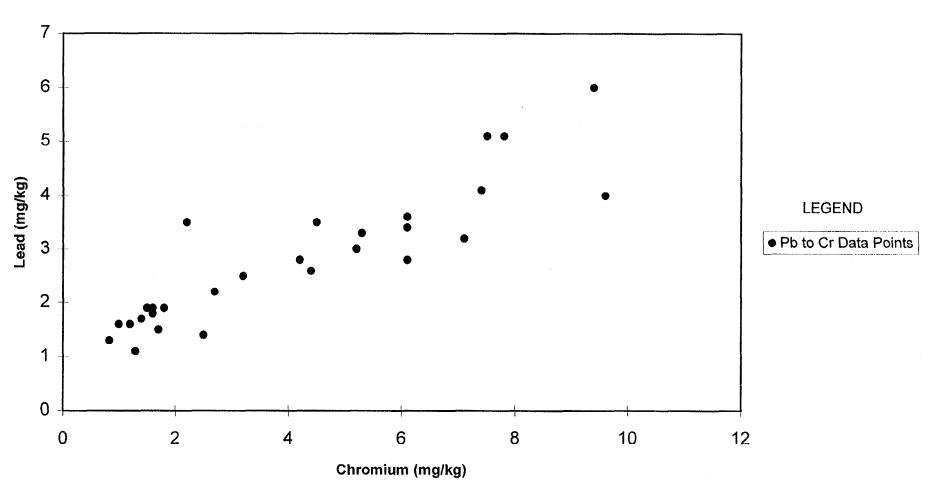
mg/kg - Milligrams per Kilogram

J - Resultant Concentration is Estimated

APPENDIX G.2 STATISTICS FOR INORGANICS IN SUBSURFACE SANDS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

SAMPLE ID	Minimum	Maximum	Minimum	Maximum	Percent	Percent	Frequency	Arithmatic Mean	Median	Arithmatic Mean
SAMPLE DATE	Non-Detect	Non-Detect	Detected	Detected	Non-Detect	Detected	of Detection	Positive Detects	Positive Detects	Half Non-Detects
METALS (mg/kg)										
Aluminum	0	0	260 Ј	9900	0.00%	100.00%	29/29	3608.24	3500	3608.2414
Antimony	0.2 UJ	0.4 UJ	0.2 Ј	0.41 J	62.07%	37.93%	11/29	0.3	0.31	0.1881
Arsenic	0.27 U	0.32 U	0.34 J	1.4	79.31%	20.69%	6/29	0.84	0.9	0.2884
Barium	0	0	0.67 Ј	18.2	0.00%	100.00%	29/29	5.67	4	5.6679
Beryllium	0.005 U	0.0475 U	0.013 J	0.097 J	44.83%	55.17%	16/29	0.05	0.05	0.0343
Cadmium	0.0105 U	0.0125 U	0	0	100.00%	0.00%	0/29	. 0	0	0.0112
Calcium	9.1 U	44.2 U	12.7 J	499	34.48%	65.52%	19/29	81.33	61.3	58.1931
Chromium	0	0	0.83	13.2	0.00%	100.00%	29/29	4.43	4.2	4.4286
Cobalt	0.083 U	0.098 U	0.1 J	1	37.93%	62.07%	18/29	0.34	0.23	0.2258
Copper	0.17 U	1 U	0.23 J	3.3	48.28%	51.72%	15/29	1.21	0.75	0.7612
Iron	0	0	81.5	4600	0.00%	100.00%	29/29	1211.92	877	1211.9172
Lead	0	0	1.1 J	6	0.00%	100.00%	29/29	2.88	2.8	2.8828
Magnesium	. 0	0	13.5 J	216	0.00%	100.00%	29/29	93.84	78.1	93.8414
Manganese	0	0	0.75 J	7.1	0.00%	100.00%	29/29	2.69	2.2	2.6948
Mercury	0.018 U	0.081 U	0.021 J	0.061 J	34.48%	65.52%	19/29	0.04	0.03	0.0313
Nickel	0.096 U	0.53 U	0.12 J	3.6	20.69%	79.31%	23/29	0.96	0.64	0.7788
Potassium	0	0	16 J	292	0.00%	100.00%	29/29	81.31	51.1	81.3138
Selenium	0.23 U	0.27 U	0.24 J	0.47 J	62.07%	37.93%	11/29	0.34	0.32	0.2064
Silver	0.082 U	0.1 U	0.1 J	0.1 J	96.55%	3.45%	1/29	0.1	0.1	0.0465
Sodium	28.7 U	116 U	0	0	100.00%	0.00%	0/29	0	0	35.4103
Thallium	0.34 UJ	0.41 UJ	0	0	100.00%	0.00%	0/29	0	0	0.1838
Vanadium	0	0	0.6 J	13.7	0.00%	100.00%	29/29	4.92	3	4.9155
Zinc	0.26 U	2.4 U	0.33 J	7.9	58.62%	41.38%	12/29	2.93	2.4	1.5421

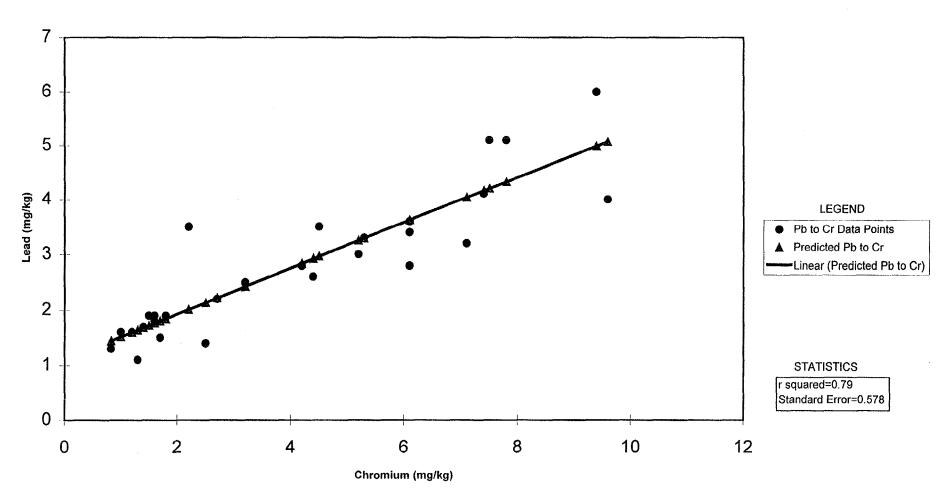
APPENDIX G.2 STATISTICS FOR INORGANICS IN SUBSURFACE SANDS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371


				01000				
SAMPLE ID SAMPLE DATE	Standard Deviation	Upper 95% Confidence Level	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	Degree of Freedom	H Statistic	Log Upper 95% Confidence Level	Location of Maximum Detect
METALS (mg/kg)								
Aluminum	2732.3869	4471.3804	7.84	0.95	28	2.456	6233.7317	BASE-BG23-01
Antimony	0.1021	0.2204	-1.8	0.51	28	2.027	0.2281	BASE-BG08-05
Arsenic	0.3339	0.3939	-1.59	0.71	28	2.225	0.3544	BASE-BG36-01
Barium	4.5551	7.1068	1.43	0.83	28	2.337	8.4438	BASE-BG06-05
Beryllium	0.0264	0.0426	-3.75	0.97	28	2.456	0.0589	BASE-BG09-05
Cadmium	0.0006	0.0114	-4.49	0.05	28	1.706	0.0114	
Calcium	92.0399	87.2678	3.49	1.02	28	2.779	93.9328	BASE-BG23-01
Chromium	3.1688	5.4296	1.21	0.79	28	2.225	6.382	BASE-BG36-01
Cobalt	0.2575	0.3071	-2.02	1.04	28	2.779	0.3909	BASE-BG36-01
Соррег	0.8869	1.0414	-0.75	0.94	28	2.456	1.1403	BASE-BG42-01
Iron	1167.3471	1580.6728	6.65	1.05	28	2.779	2322.2419	BASE-BG23-01
Lead	1.3194	3.2996	0.96	0.46	28	1.942	3.4347	BASE-BG21-02
Magnesium	66.8039	114.9442	4.25	0.83	28	2.337	143.0148	BASE-BG27
Manganese	1.5508	3.1847	0.84	0.56	28	2.027	3.368	BASE-BG27
Mercury	0.0156	0.0362	-3.59	0.53	28	2.027	0.0389	BASE-BG21-02,BASE-BG42-01
Nickel	0.8769	1.0558	-0.87	1.25	28	3.13	1.9201	BASE-BG23-01
Potassium	72.8531	104.3275	4.05	0.83	28	2.337	117.3677	BASE-BG09-05
Selenium	0.1202	0.2444	-1.72	0.52	28	2.027	0.2501	BASE-BG37
Silver	0.0106	0.0498	-3.08	0.16	28	1.749	0.0489	BASE-BG36-01
Sodium	11.9668	39.1905	3.5	0.38	28	1.867	40.8916	
Thallium	0.0103	0.1871	-1.7	0.06	28	1.706	0.1871	
Vanadium	3.6975	6.0835	1.27	0.87	28	2.337	7.6219	BASE-BG20-01
Zinc	1.8217	2.1176	-0.19	1.2	28	2.779	3.1667	BASE-BG42-01

APPENDIX G.2
STATISTICS FOR INORGANICS IN SUBSURFACE SANDS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

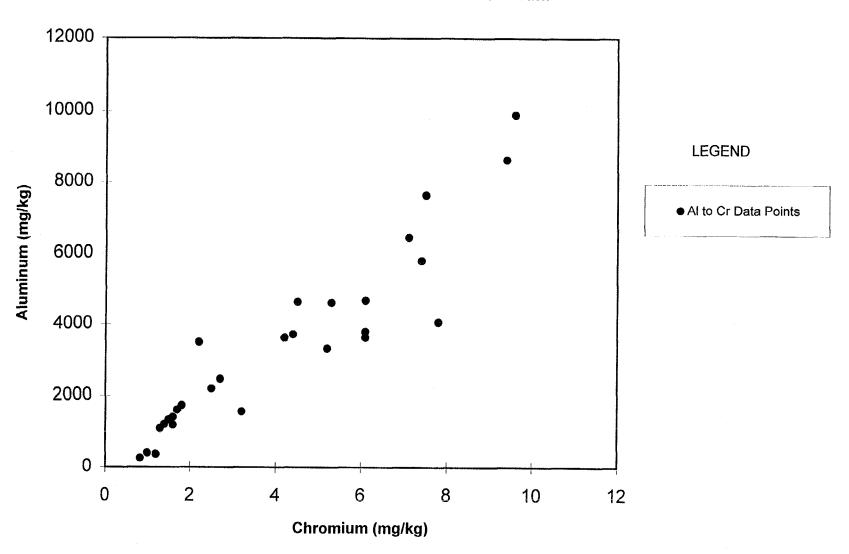
SAMPLE ID	Lognormal Distribution			Norn	nal Distribution		Sample	Frequency
SAMPLE DATE	W-Value	Quantile	True/False	W-Value	Quantile	True/False	Count	of Detection
METALS (mg/kg)								
Aluminum	0.933592506	0.926	TRUE	0.896415236	0.926	FALSE	29	29/29
Antimony	0.818844509	0.926	FALSE	0.802853685	0.926	FALSE	29	11/29
Arsenic	0.589125702	0.926	FALSE	0.517039408	0.926	FALSE	29	6/29
Barium	0.976562565	0.926	TRUE	0.853947264	0.926	FALSE	29	29/29
Beryllium	0.902064066	0.926	FALSE	0.906065927	0.926	FALSE	29	16/29
Cadmium	0.884087341	0.926	FALSE	0.879935401	0.926	FALSE	29	0/29
Calcium	0.981102418	0.926	TRUE	0.506473022	0.926	FALSE	29	19/29
Chromium	0.941801922	0.926	TRUE	0.899637695	0.926	FALSE	29	29/29
Cobalt	0.887520432	0.926	FALSE	0.729019299	0.926	FALSE	29	18/29
Copper	0.941496737	0.926	TRUE	0.682266928	0.926	FALSE	29	15/29
Iron	0.963180256	0.926	TRUE	0.797639898	0.926	FALSE	29	29/29
Lead	0.964919372	0.926	TRUE	0.927143611	0.926	TRUE	29	29/29
Magnesium	0.943697991	0.926	TRUE	0.886604588	0.926	FALSE	29	29/29
Manganese	0.97953119	0.926	TRUE	0.897536926	0.926	FALSE	29	29/29
Mercury	0.945876382	0.926	TRUE	0.909861669	0.926	FALSE	29	19/29
Nickel	0.934313986	0.926	TRUE	0.764146971	0.926	FALSE	29	23/29
Potassium	0.941067812	0.926	TRUE	0.800122055	0.926	FALSE	29	29/29
Selenium	0.759666777	0.926	FALSE	0.743176862	0.926	FALSE	29	11/29
Silver	0.499934524	0.926	FALSE	0.391269437	0.926	FALSE	29	1/29
Sodium	0.925174801	0.926	FALSE	0.960128557	0.926	TRUE	29	0/29
Thallium	0.922603738	0.926	FALSE	0.919138941	0.926	FALSE	29	0/29
Vanadium	0.945728316	0.926	TRUE	0.890005228	0.926	FALSE	29	29/29
Zinc	0.940358174	0.926	TRUE	0.744572273	0.926	FALSE	29	12/29
2		- 13 = 0						

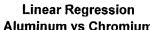
BASE BACKGROUND SUBSURFACE SAND Scatter Plot

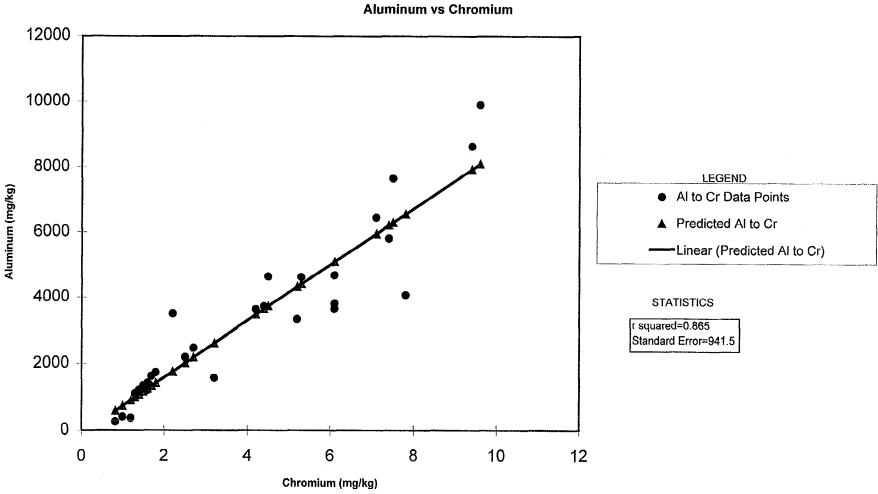

Lead vs Chromium

BASE BACKGROUND SUBSURFACE SAND

Linear Regression


Lead vs Chromium


APPENDIX G GRAPH 3


BASE BACKGROUND SUBSURFACE SAND

Scatter Plot Aluminum vs Chromium

BASE BACKGROUND SUBSURFACE SAND

APPENDIX H ANALYTICAL DATA AND STATISTICS FOR SILTS

APPENDIX H.1

ANALYTICAL RESULTS FOR SUBSURFACE SILTS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG01-02	BASE-BG04-02	BASE-BG14-01	BASE-BG24-01	BASE-BG28-02	BASE-BG29-02	BASE-BG32-03	BASE-BG40-01	BASE-BG41-01
SAMPLE DATE	7/11/00	7/11/00	7/12/00	7/13/00	7/15/00	7/12/00	7/15/00	7/16/00	7/15/00
METALS (mg/kg)									
Aluminum	2830	4660	4500	5260	16800	8160	2540	4780	3310
Antimony	0.25 UJ	0.43 UJ	0.34 UJ	0.22 U	0.47 J	0.23 UJ	0.24 U	0.23 UJ	0.24 U
Arsenic	0.29 U	0.3 U	0.29 U	0.31 U	1.9	0.42 J	0.32 U	0.32 U	0.43 J
Barium	5.2	10.5	15.6	3.2	23.1	16.6	0.92 J	5.7	3.1
Beryllium	0.057 U	0.069 U	0.1 U	0.023 J	0.15 J	0.12 U	0.16 J	0.036 J	0.046 J
Cadmium	0.022 U	0.023 U	0.022 U	0.024 U	0.023 U	0.024 U	0.025 U	0.025 U	0.025 U
Calcium	16.1 U	104 J	4950	13 U	557	98.7 J	35.6 U	37.3 J	82.6 J
Chromium	2.8	5.6	4.6	5.2	22.5	9.7	2.5	4.4	4.8
Cobalt	0.088 U	0.22 J	0.23 J	0.25 J	0.68	0.43 J	0.14 J	0.41 J	0.099 U
Copper	0.16 U	0.44 J	1.2	0.43 U	3	1.9	1.6	0.59 J	0.48 U
Iron	322	1290	2720	1370	15600	4120	102	1440	776
Lead	3.1 J	5.2 Ј	8.7 Ј	2.6 J	8.1	6.2 J	1	2.6	3.3 J
Magnesium	62.3 J	151	190	55.2 J	525	266	12.3 U	123 J	24.4 J
Manganese	1.1	3	17.2	1 J	6.9 Ј	3.9	3.5 J	1.9	0.74 J
Mercury	0.041	0.03 J	0.027 J	0.051 U	0.057 U	0.026 UJ	0.067 U	0.085 J	0.072 U
Nickel	0.33 J	0.76	1	2	2.8	1.4	0.11 U	1.2	0.42 Ј
Potassium	45.7 J	131 J	102 J	33.6 J	434	264 J	17.2 U	63.5 J	17.4 J
Selenium	0.25 J	0.26 U	0.3 J	0.26 UJ	0.77	0.42 J	0.27 Ј	0.27 U	0.27 UJ
Silver	0.088 U	0.094 U	0.088 U	0.094 U	0.24 J	0.097 U	0.099 U	0.098 U	0.099 U
Sodium	29.2 U	38.4 U	45.6 U	62.8 U	59.4 U	53.3 U	59.5 U	87.3 U	59.9 U
Thallium	0.36 UJ	0.39 UJ	0.36 UJ	0.39 UJ	0.38 UJ	0.4 UJ	0.41 UJ	0.4 UJ	0.41 UJ
Vanadium	3	5.1	7.2	9.9	33.9	14	0.35 J	5.7	2 J
Zinc	2.1 U	2.9 U	6.9	1.3 U	7.4	6.1	0.31 U	2.6 U	1 U

U - Not Detected

mg/kg - Milligrams per Kilogram

J - Resultant concentration is estimated

APPENDIX H.1 ANALYTICAL RESULTS FOR SUBSURFACE SILTS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

SAMPLE ID	BASE-BG45-01	BASE-BG46-02	BASE-BG49-02	
SAMPLE DATE	7/17/00	7/13/00	7/12/00	
METALS (mg/kg)				
Aluminum	4890	1450	9510	
Antimony	0.22 UJ	0.23 U	0.23 UJ	
Arsenic	3.2	0.32 U	2.6	
Barium	5.7	1.4	12.1	
Beryllium	0.042 J	0.039 J	0.22 J	
Cadmium	0.023 U	0.025 U	0.024 U	
Calcium	42 J	12.6 U	256	
Chromium	9	1.9	15.9	
Cobalt	0.13 J	0.098 U	0.39 J	
Copper	0.72	0.27 U	2.2	
Iron	2490	1250	6550	
Lead	4.2	1.8 J	5.3 J	
Magnesium	168	14.9 J	367	
Manganese	2.6	0.57 J	5.7	
Mercury	0.16 J	0.042 U	0.034 J	
Nickel	0.5 J	0.13 J	0.97	
Potassium	120 J	11.9 J	546 J	
Selenium	0.26 U	0.27 UJ	0.27 U	
Silver	0.093 U	0.098 U	0.12 J	
Sodium	101 U	62 U	37 U	
Thallium	0.38 UJ	0.41 UJ	0.4 UJ	
Vanadium	6.6	3.2	17.1	
Zinc	3.3	1 U	5	

Notes:

U - Not Detected

mg/kg - Milligrams per Kilogram

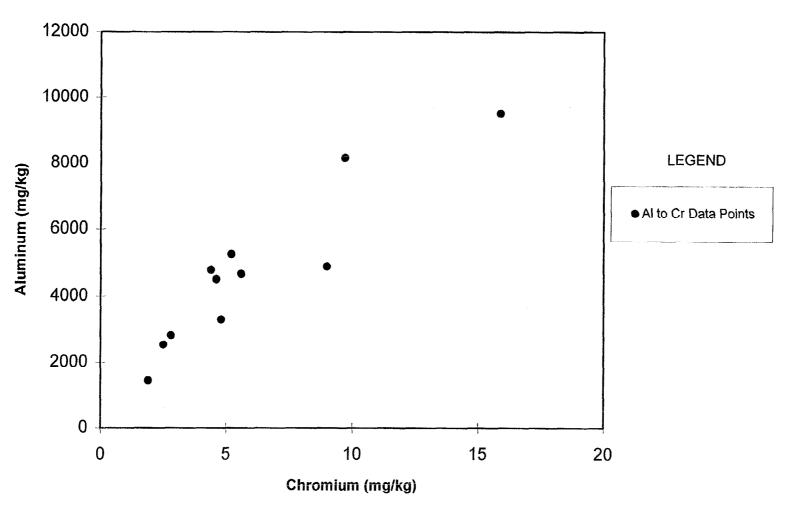
J - Resultant concentration is estimated

APPENDIX H.2 STATISTICS FOR INORGANICS IN SUBSURFACE SILTS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

	Minimum Non-Detect	Maximum Non-Detect	Minimum Detected	Maximum Detected	Percent Non-Detect	Percent Detected	Frequency of Detection	Arithmatic Mean Positive Detects	Median Positive Detects	Arithmatic Mean Half Non-Detects
METALS (mg/kg)										
Aluminum	0	0	1450	16800	0%	100%	12/12	5724.17	4720	5724.1667
Antimony	0.22 UJ	0.43 UJ	0.47 J	0.47 J	92%	8%	1/12	0.47	0.47	0.1583
Arsenic	0.29 U	0.32 U	0.42 J	3.2	58%	42%	5/12	1.71	1.9	0.8021
Barium	0	0	0.92 J	23.1	0%	100%	12/12	8.59	5.7	8.5933
Beryllium	0.057 U	0.12 U	0.023 J	0.22 J	33%	67%	8/12	0.09	0.04	0.0741
Cadmium	0.022 U	0.025 U	0	0	100%	0%	0/12			0.0119
Calcium	12.6 U	35.6 U	37.3 J	4950	33%	67%	8/12	765.95	101.35	513.8542
Chromium	0	. 0	1.9	22.5	0%	100%	12/12	7.41	5	7.4083
Cobalt	0.088 U	0.099 U	0.13 J	0.68	25%	75%	9/12	0.32	0.25	0.2519
Copper	0.16 U	0.48 U	0.44 Ј	3	33%	67%	8/12	1.46	1.4	1.0267
Iron	0	0	102	15600	0%	100%	12/12	3169.17	1405	3169.1667
Lead	0	0	1	8.7 J	0%	100%	12/12	4.34	3.75	4.3417
Magnesium	12.3 U	12.3 U	14.9 J	525	8%	92%	11/12	176.98	151	162.7458
Manganese	0	0	0.57 J	17.2	0%	100%	12/12	4.01	2.8	4.0092
Mercury	0.026 UJ	0.072 U	0.027 J	0.16 J	50%	50%	6/12	0.06	0.04	0.0445
Nickel	0.11 U	0.11 U	0.13 J	2.8	8%	92%	11/12	1.05	0.97	0.9638
Potassium	17.2 U	17.2 U	11.9 J	546 J	8%	92%	11/12	160.83	102	148.1417
Selenium	0.26 U	0.27 U	0.25 Ј	0.77	58%	42%	5/12	0.4	0.3	0.245
Silver	0.088 U	0.099 U	0.12 J	0.24 J	83%	17%	2/12	0.18	0.18	0.0695
Sodium	29.2 U	101 U	0	0	100%	0%	0/12	***		28.975
Thallium	0.36 UJ	0.41 UJ	0	0	100%	0%	0/12			0.1954
Vanadium	0	0	0.35 J	33.9	0%	100%	12/12	9	6.15	9.0042
Zinc	0.31 U	2.9 U	3.3	7.4	58%	42%	5/12	5.74	6.1	2.8588

APPENDIX H.2 STATISTICS FOR INORGANICS IN SUBSURFACE SILTS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

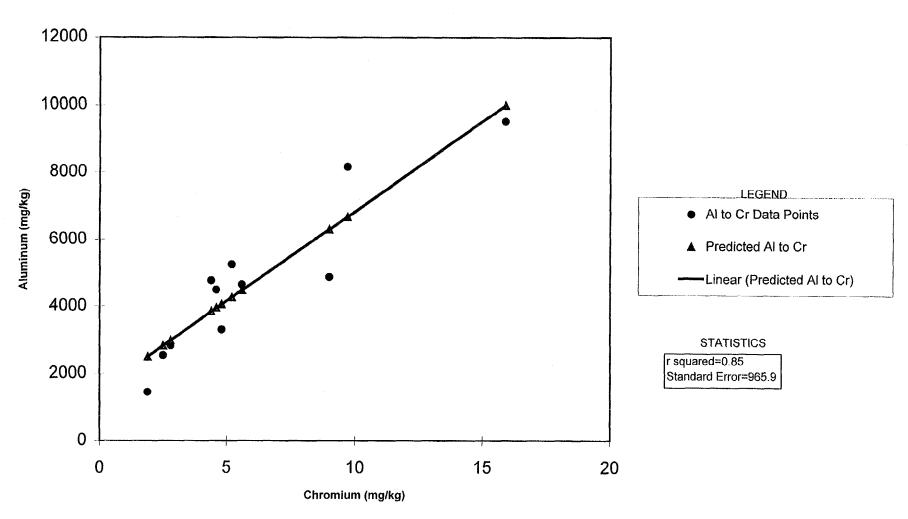
	Standard Deviation	Upper 95% Confidence Level	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	Degree of Freedom	H Statistic	Log Upper 95% Confidence Level	Location of Maximum Detect
	Bornaton	Connadice Editor	Timi Tion Dolous	Sovieton	Ticaom		Confidence Level	Maximum Delect
METALS (mg/kg)								
Aluminum	4155.8884	7878.6913	8.46	0.65	11	2.414	9257.8205	BASE-BG28-02
Antimony	0.103	0.2117	-1.95	0.43	11	2.141	0.2047	BASE-BG28-02
Arsenic	1.1044	1.3747	-1.01	1.23	11	3.389	2.7302	BASE-BG45-01
Barium	6.9917	12.218	1.77	1	11	3.389	26.9796	BASE-BG28-02
Beryllium	0.0646	0.1076	-2.88	0.73	11	2.57	0.1293	BASE-BG49-02
Cadmium	0.0006	0.0122	-4.43	0.05	11	1.775	0.0122	
Calcium	1405.8556	1242.6877	4.17	1.98	11	4.962	8819.2735	BASE-BG14-01
Chromium	6.1438	10.5934	1.74	0.74	11	2.57	13.2338	BASE-BG28-02
Cobalt	0.1938	0.3524	-1.72	0.93	11	2.915	0.6282	BASE-BG28-02
Copper	0.953	1.5208	-0.5	1.18	11	3.389	4.0806	BASE-BG28-02
Iron	4308.6104	5402.8665	7.36	1.33	11	3.896	18023.3789	BASE-BG28-02
Lead	2.4228	5.5977	1.3	0.63	11	2.414	7.1319	BASE-BG14-01
Magnesium	157.6166	244.4585	4.48	1.35	11	3.896	1079.3447	BASE-BG28-02
Manganese	4.6021	6.3951	0.92	1	11	3.389	11.545	BASE-BG14-01
Mercury	0.0404	0.0654	-3.35	0.65	11	2.414	0.0696	BASE-BG45-01
Nickel	0.8072	1.3823	-0.47	1.13	11	3.389	3.768	BASE-BG28-02
Potassium	176.4678	239.6274	4.27	1.36	11	3.896	887.9915	BASE-BG49-02
Selenium	0.1902	0.3436	-1.6	0.59	11	2.271	0.3617	BASE-BG28-02
Silver	0.0576	0.0994	-2.84	0.52	11	2.271	0.0957	BASE-BG28-02
Sodium	10.2078	34.267	3.31	0.35	11	2.026	36.1184	
Thallium	0.0089	0.2	-1.63	0.05	11	1.775	0.2003	
Vanadium	9.2441	13.7966	1.7	1.18	11	3.389	36.3914	BASE-BG28-02
Zinc	2.7509	4.2849	0.46	1.25	11	3.896	15.1923	BASE-BG28-02


APPENDIX H.2 STATISTICS FOR INORGANICS IN SUBSURFACE SILTS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

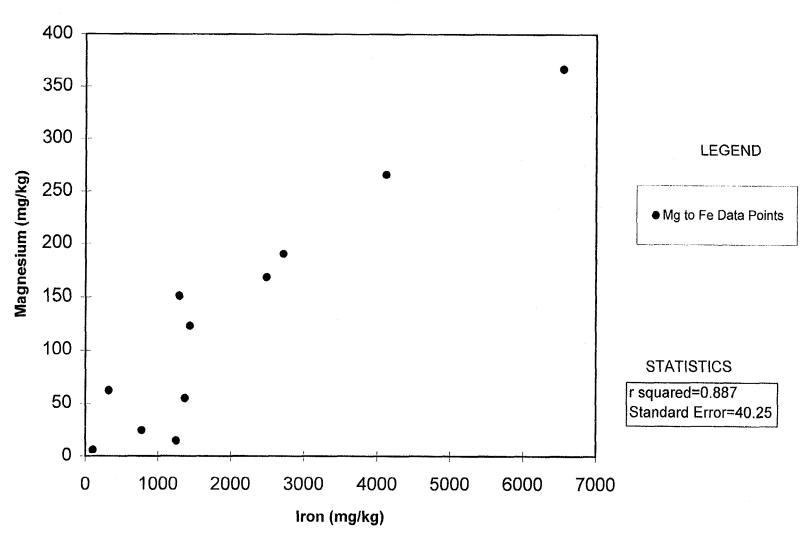
	Lognormal Distribution			Norn	Sample	Frequency		
	W-Value	Quantile	True/False	W-Value	Quantile	True/False	Count	of Detection
METALS (mg/kg)								
Aluminum	0.972238174	0.859	TRUE	0.799105755	0.859	FALSE	12	12/12
Antimony	0.630569767	0.859	FALSE	0.52321617	0.859	FALSE	12	1/12
Arsenic	0.737935815	0.859	FALSE	0.656226765	0.859	FALSE	12	5/12
Barium	0.950682146	0.859	TRUE	0.902672966	0.859	TRUE	12	12/12
Beryllium	0.867957027	0.859	TRUE	0.733553815	0.859	FALSE	12	8/12
Cadmium	0.86815791	0.859	TRUE	0.868909013	0.859	TRUE	12	0/12
Calcium	0.932251918	0.859	TRUE	0.405314548	0.859	FALSE	12	8/12
Chromium	0.959768387	0.859	TRUE	0.796654485	0.859	FALSE	12	12/12
Cobalt	0.911725467	0.859	TRUE	0.903820321	0.859	TRUE	12	9/12
Copper	0.951875935	0.859	TRUE	0.88326228	0.859	TRUE	12	8/12
Iron	0.969985646	0.859	TRUE	0.668831964	0.859	FALSE	12	12/12
Lead	0.961876331	0.859	TRUE	0.943340168	0.859	TRUE	12	12/12
Magnesium	0.944125518	0.859	TRUE	0.877964338	0.859	TRUE	12	11/12
Manganese	0.973796799	0.859	TRUE	0.70986337	0.859	FALSE	12	12/12
Mercury	0.883349164	0.859	TRUE	0.642227652	0.859	FALSE	12	6/12
Nickel	0.937198909	0.859	TRUE	0.908559201	0.859	TRUE	12	11/12
Potassium	0.963278425	0.859	TRUE	0.777025461	0.859	FALSE	12	11/12
Selenium	0.775630468	0.859	FALSE	0.676103298	0.859	FALSE	12	5/12
Silver	0.559192238	0.859	FALSE	0.490474348	0.859	FALSE	12	2/12
Sodium	0.957241106	0.859	TRUE	0.920806987	0.859	TRUE	12	0/12
Thallium	0.873761349	0.859	TRUE	0.88020196	0.859	TRUE	12	0/12
Vanadium	0.947317114	0.859	TRUE	0.790232441	0.859	FALSE	12	12/12
Zinc	0.929424664	0.859	TRUE	0.829753578	0.859	FALSE	12	5/12

BASE BACKGROUND SUBSURFACE SILT

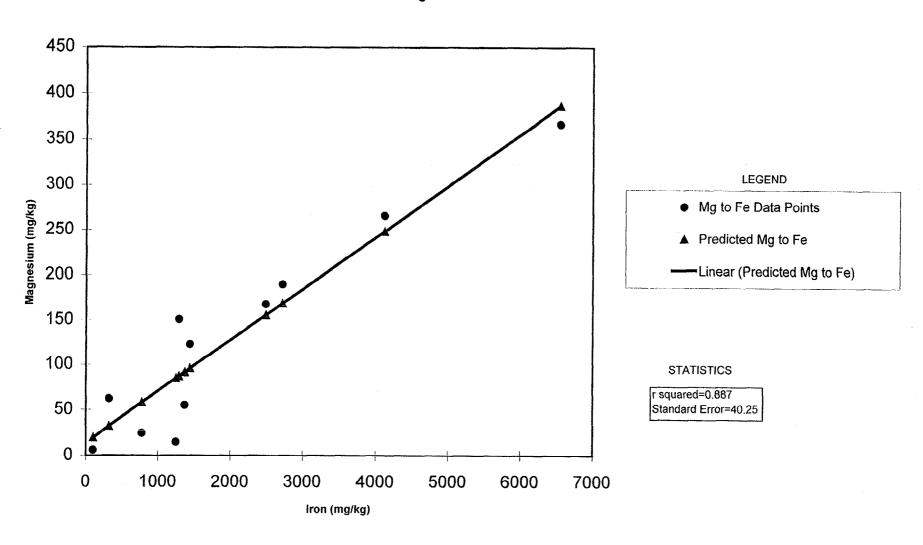
Scatter Plot

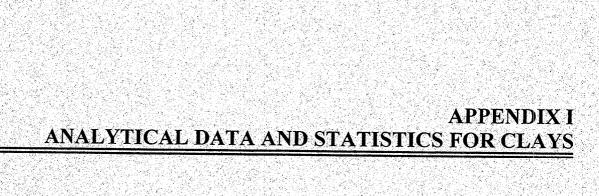

Aluminum vs Chromium

BASE BACKGROUND SUBSURFACE SILT


Linear Regression

Aluminum vs Chromium


BASE BACKGROUND SUBSURFACE SILT


Scatter Plot Magnesium vs Iron

BASE BACKGROUND SUBSURFACE SILT

Linear Regression Magnesium vs Iron

APPENDIX I.1

ANALYTICAL RESULTS FOR SUBSURFACE CLAYS
BASE BACKGROUND STUDY
MCB, CAMP LEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID	BASE-BG02-03	BASE-BG03-02	BASE-BG05-02	BASE-BG07-03	BASE-BG11-03	BASE-BG13-03	BASE-BG15-03	BASE-BG17-04	BASE-BG47-04
SAMPLE DATE	7/13/00	7/13/00	7/13/00	7/13/00	7/11/00	7/11/00	7/16/00	7/13/00	7/16/00
METALS (mg/kg)									
Aluminum	6000	10700	10900	6860	8800	14900	15600 J	6850	5290
Antimony	0.29 UJ	0.24 U	0.24 U	0.28 J	0.28 UJ	0.23 UJ	0.5 J	0.2 UJ	0.24 UJ
Arsenic	1 J	8.3	9.3	0.3 U	3.9	0.55 J	8.1	0.43 J	3.3
Barium	12.7	21.4	13.4	11.1	15.7	14.6	22.4	8.2	27.1
Beryllium	0.092 U	0.19 J	0.16 J	0.13 J	0.24 J	0.26 J	0.26 J	0.098 U	0.91
Cadmium	0.024 U	0.025 U	0.025 U	0.023 U	0.025 U	0.024 U	0.026 U	0.022 U	0.025 U
Calcium	235	172	1800	42.9 J	148	112 J	30.4 J	181	458
Chromium	13.2	20.8	19.3	9.3	22.6	15.9 J	23.3	9.3	11.3
Cobalt	0.14 J	0.47 J	0.46 J	1.1	0.32 J	0.67	0.71	0.32 J	6.8
Copper	1.8	3.6	3.9	1.8	4.2	3.2	3.5	0.85	6.7
Iron	3020	13300	14000	1450	5050	4100	12000 J	1420	8450
Lead	8.6 J	10.7 J	10.7 J	6.6 J	10 J	7.5 J	12.2 J	4.8 J	5.4
Magnesium	323	572	568	212	264	343	617	242	1250
Manganese	3.5	5.1 J	5.9 J	3.4 J	4.5	5.2	6.7	3	67.6
Mercury	0.032 UJ	0.09	0.045	0.036 U	0.044 J	0.02 U	0.036 J	0.032 UJ	0.059 J
Nickel	0.86	1.1	1.1	1.4	1.2	1.6	2	0.93	12.3
Potassium	303 J	565	518	275	869 J	644	784	269 J	668 J
Selenium	0.26 U	0.51 J	0.59 J	0.25 UJ	0.49 J	0.26 U	1.3	0.24 U	0.3 J
Silver	0.096 U	0.15 J	0.19 J	0.092 U	0.1 U	0.096 U	0.36 J	0,086 U	0.1 J
Sodium	68 U	86.2 U	63.8 U	98.3 U	41 U	47.1 U	140 U	56.6 U	66.4 U
Thallium	0.4 UJ	0.42 UJ	0.42 UJ	0.38 UJ	0.42 UJ	0.4 UJ	0.42 UJ	0.35 UJ	0.42 UJ
Vanadium	9.3	31.9	32	9.7	24.2	13.6 Ј	39	8.8	11.1
Zinc	4.2	6.4	6.5	4.3	4.8	11.8	6.4	3.1 U	39.7

Notes:

U - Not Detected

mg/kg - Milligrams per Kilogram

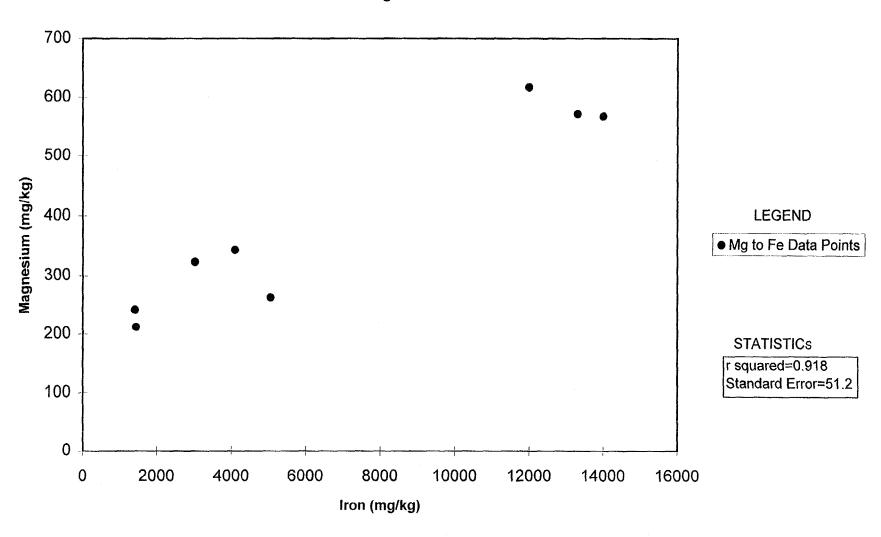
J - Resultant concentration is estimated

APPENDIX I.2 STATISTICS FOR INORGANICS IN SUBSURFACE CLAYS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

SAMPLE ID SAMPLE DATE	Minimum Non-Detect	Maximum Non-Detect	Minimum Detected	Maximum Detected	Percent Non-Detect	Percent Detected	Frequency of Detection	Arithmatic Mean Positive Detects	Median Positive Detects
METALS (mg/kg)									
Aluminum	0	0	5290	15600 J	0%	100%	9/9	9544.44	8800
Antimony	0.2 UJ	0.29 UJ	0.28 J	0.5 J	78%	22%	2/9	0.39	0.39
Arsenic	0.3 U	0.3 U	0.43 J	9.3	11%	89%	8/9	4.36	3.6
Barium	0	0	8.2	27.1	0%	100%	9/9	16.29	14.6
Beryllium	0.092 U	0.098 U	0.13 J	0.91	22%	78%	7/9	0.31	0.24
Cadmium	0.022 U	0.026 U	0	0	100%	0%	0/9		
Calcium	0	0	30.4 J	1800	0%	100%	9/9	353.26	172
Chromium	0	0	9.3	23.3	0%	100%	9/9	16.11	15.9
Cobalt	0	0	0.14 J	6.8	0%	100%	9/9	1.22	0.47
Copper	0	0	0.85	6.7	0%	100%	9/9	3.28	3.5
Iron	0	0	1420	14000	0%	100%	9/9	6976.67	5050
Lead	0	0	4.8 J	12.2 J	0%	100%	9/9	8.5	8.6
Magnesium	0	0	212	1250	0%	100%	9/9	487.89	343
Manganese	. 0	0	3	67.6	0%	100%	9/9	11.66	5.1
Mercury	0.02 U	0.036 U	0.036 J	0.09	44%	56%	5/9	0.05	0.05
Nickel	0	0	0.86	12.3	0%	100%	9/9	2.5	1.2
Potassium	0	0	269 J	869 J	0%	100%	9/9	543.89	565
Selenium	0.24 U	0.26. U	0.3 J	1.3	44%	56%	5/9	0.64	0.51
Silver	0.086 U	0.1 U	0.1 J	0.36 J	56%	44%	4/9	0.2	0.17
Sodium	41 U	140 U	0	0	100%	0%	0/9		***
Thallium	0.35 UJ	0.42 UJ	0	0	100%	0%	0/9	**=	
Vanadium	0	0	8.8	39	0%	100%	9/9	19.96	13.6
Zinc	3.1 U	3.1 U	4.2	39.7	11%	89%	8/9	10.51	6.4

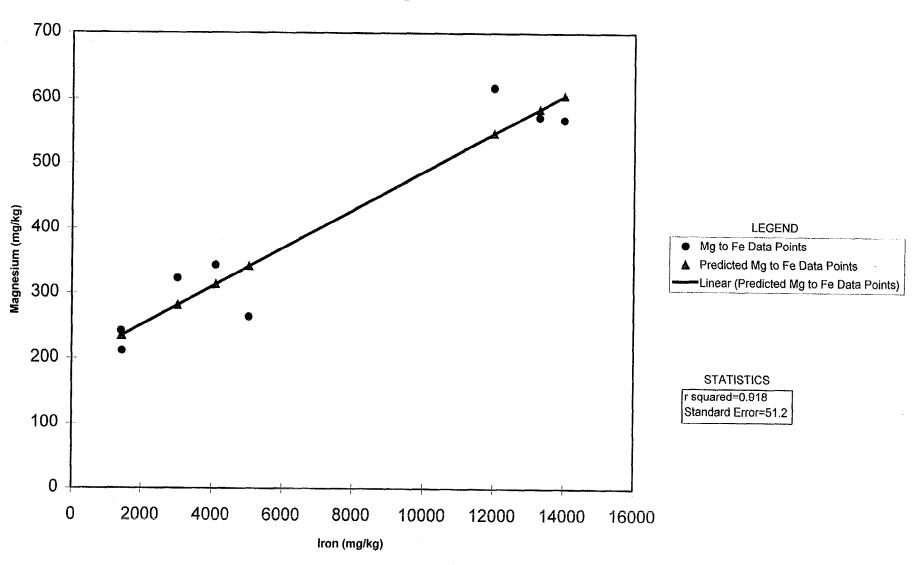
APPENDIX I.2 STATISTICS FOR INORGANICS IN SUBSURFACE CLAYS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

				C10-037	ı				
SAMPLE ID SAMPLE DATE	Arithmatic Mean Half Non-Detects	Standard Deviation	Upper 95% Confidence Level	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	Degree of Freedom	H Statistic	Log Upper 95% Confidence Level	Location of Maximum Detect
METALS (mg/kg)									
Aluminum	9544.4444	3778.3664	11886.4627	9.1	0.39	8	2.134	12913.4833	BASE-BG15-03
Antimony	0.1822	0.1307	0.2632	-1.85	0.53	8	2.439	0.2829	BASE-BG15-03
Arsenic	3.8922	3.7459	6.2141	0.63	1.51	8	5.065	87.3252	BASE-BG05-02
Barium	16.2889	6.0944	20.0665	2.73	0.38	8	2.134	21.8191	BASE-BG47-04
Beryllium	0.2494	0.2608	0.4111	-1.76	0.91	8	3.239	0.739	BASE-BG47-04
Cadmium	0.0122	0.0006	0.0126	-4.41	0.05	8	1.822	0.0126	
Calcium	353.2556	556.9382	698.4734	5.15	1.21	8	3.82	1830.3975	BASE-BG05-02
Chromium	16.1111	5.5945	19.5788	2.72	0.37	8	2.134	21.4891	BASE-BG15-03
Cobalt	1.2211	2.1107	2.5294	-0.5	1.08	8	3.82	4.675	BASE-BG47-04
Copper	3.2833	1.7092	4.3427	1.05	0.61	8	2.618	6.0244	BASE-BG47-04
Iron	6976.6667	5071.728	10120.3745	8.54	0.9	8	3.021	20042.5346	BASE-BG05-02
Lead	8.5	2.587	10.1036	2.09	0.33	8	2.134	10.9704	BASE-BG15-03
Magnesium	487.8889	325.1651	689.4423	6.03	0.57	8	2.439	803.3315	BASE-BG47-04
Manganese	11.6556	21.0146	24.6815	1.81	0.94	8	3.239	27.8748	BASE-BG47-04
Mercury	0.0371	0.0259	0.0532	-3.52	0.73	8	2.813	0.0799	BASE-BG03-02
Nickel	2.4989	3.6925	4.7877	0.46	0.81	8	3.021	5.2514	BASE-BG47-04
Potassium	543.8889	222.4255	681.7592	6.21	0.46	8	2.277	799.585	BASE-BG11-03
Selenium	0.4106	0.3833	0.6482	-1.24	0.88	8	3.021	1.0834	BASE-BG15-03
Silver	0.115	0.1062	0.1808	-2.46	0.78	8	2.813	0.2501	BASE-BG15-03
Sodium	37.0778	15.2154	46.5091	3.55	0.38	8	2.134	49.5332	
Thallium	0.2017	0.0122	0.2093	-1.6	0.06	8	1.822	0.2101	
Vanadium	19.9556	11.8871	27.3238	2.83	0.61	8	2.618	35.7782	BASE-BG15-03
Zinc	9.5167	11.651	16.7386	1.85	0.88	8	3.021	23.7327	BASE-BG47-04


APPENDIX I.2 STATISTICS FOR INORGANICS IN SUBSURFACE CLAYS BASE BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

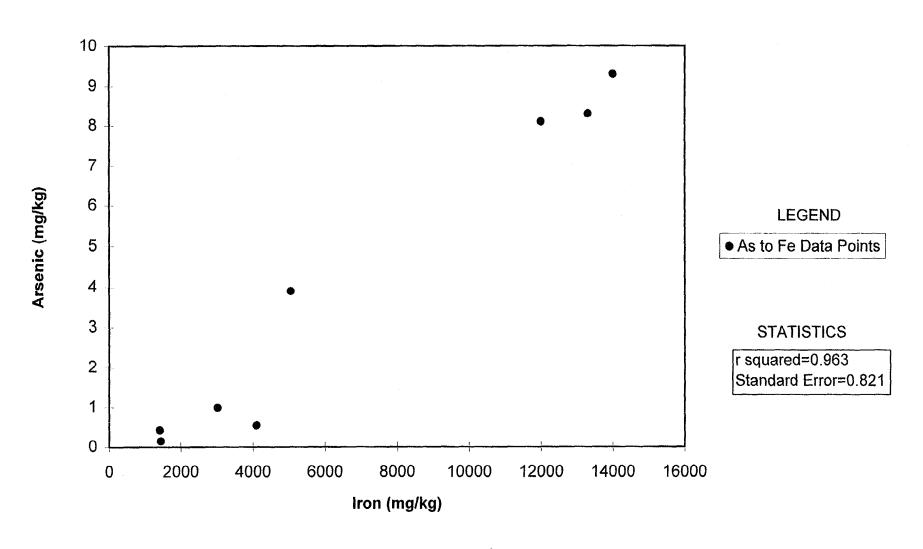
SAMPLE ID	Lognor	mal Distribution		Norn	nal Distribution		Sample	Frequency
SAMPLE DATE	W-Value	Quantile	True/False	W-Value	Quantile	True/False	Count	of Detection
METALS (mg/kg)								
Aluminum	0.932432547	0.829	TRUE	0.897018875	0.829	TRUE	9	9/9
Antimony	0.749994295	0.829	FALSE	0.640859547	0.829	FALSE	9	2/9
Arsenic	0.900481481	0.829	TRUE	0.839398482	0.829	TRUE	9	8/9
Barium	0.973548407	0.829	TRUE	0.942100777	0.829	TRUE	9	9/9
Beryllium	0.922290634	0.829	TRUE	0.684966691	0.829	FALSE	9	7/9
Cadmium	0.897514264	0.829	TRUE	0.905466141	0.829	TRUE	9	0/9
Calcium	0.950664967	0.829	TRUE	0.584211066	0.829	FALSE	9	9/9
Chromium	0.892605857	0.829	TRUE	0.900111261	0.829	TRUE	9	9/9
Cobalt	0.888093974	0.829	TRUE	0.511920257	0.829	FALSE	9	9/9
Copper	0.919879431	0.829	TRUE	0.935552151	0.829	TRUE	9	9/9
Iron	0.896595243	0.829	TRUE	0.877493511	0.829	TRUE	9	9/9
Lead	0.932503796	0.829	TRUE	0.94774216	0.829	TRUE	9	9/9
Magnesium	0.922331255	0.829	TRUE	0.788906861	0.829	FALSE	9	9/9
Manganese	0.663916901	0.829	FALSE	0.444939185	0.829	FALSE	9	9/9
Mercury	0.943468016	0.829	TRUE	0.891444482	0.829	TRUE	9	5/9
Nickel	0.693446619	0.829	FALSE	0.476617772	0.829	FALSE	9	9/9
Potassium	0.875425325	0.829	TRUE	0.917046105	0.829	TRUE	9	9/9
Selenium	0.865283688	0.829	TRUE	0.775801971	0.829	FALSE	9	5/9
Silver	0.828672994	0.829	FALSE	0.740101508	0.829	FALSE	9	4/9
Sodium	0.969730013	0.829	TRUE	0.888851778	0.829	TRUE	9	0/9
Thallium	0.74245522	0.829	FALSE	0.750950301	0.829	FALSE	9	0/9
Vanadium	0.852070862	0.829	TRUE	0.837716388	0.829	TRUE	9	9/9
Zinc	0.903025807	0.829	TRUE	0.599449899	0.829	FALSE	9	8/9
			•		5.3 2 2		,	0,)

APPENDIX I GRAPH 1


BASE BACKGROUND SUBSURFACE CLAY

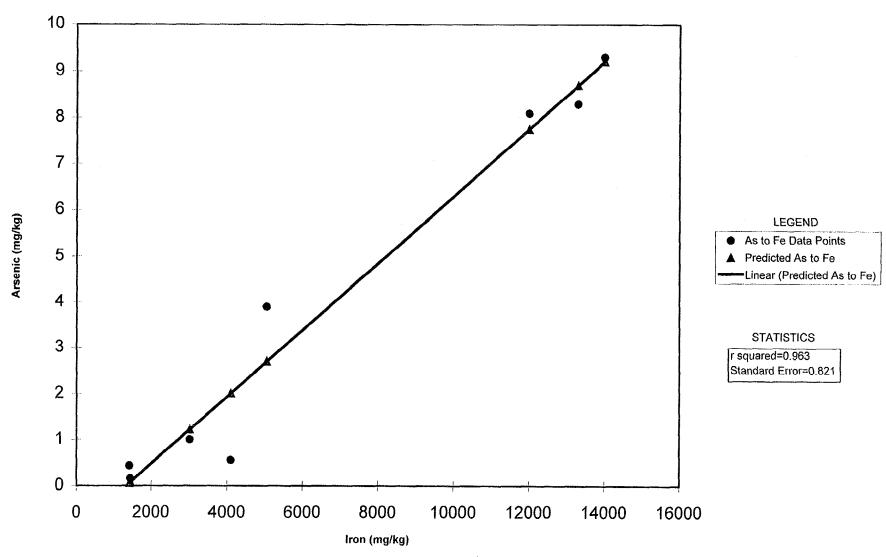
Scatter Plot Magnesium vs Iron

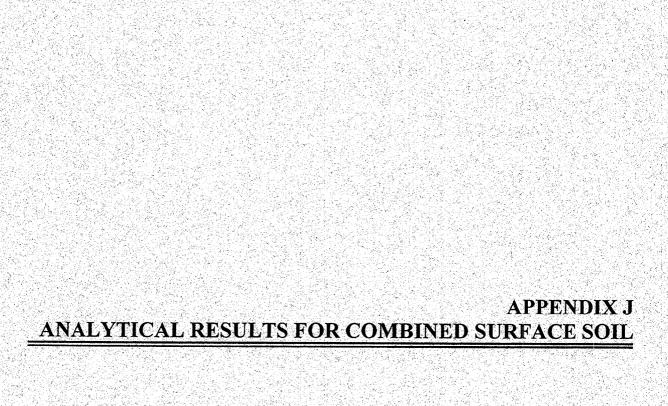
BASE BACKGROUND SUBSURFACE CLAY


Linear Regression Magnesium vs Iron

APPENDIX I GRAPH 3

BASE BACKGROUND SUBSURFACE CLAY


Scatter Plot Arsenic vs Iron


APPENDIX I GRAPH 4

BASE BACKGROUND SUBSURFACE CLAY

Linear Regression
Arsenic vs Iron

K:\624/U\3/1pnase\dta\datatable\lejeunebackground\tables\basetables\newstats\regression\su ClaykG\As to Fe Chart 1

APPENDIX J.1

BASE BACKGROUND

SURFACE SOIL ANALYTICAL RESULTS

BACKGROUND STUDY

MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	BASE-BG01-00	BASE-BG02-00	BASE-BG03-00	BASE-BG04-00	BASE-BG05-00	BASE-BG06-00	BASE-BG07-00	BASE-BG08-00
SAMPLE DATE	7/11/00	7/13/00	7/13/00	7/11/00	7/13/00	7/13/00	7/13/00	7/16/00
METALS (mg/kg)								
Aluminum	2040	1380	2090	8530	2320	3140	2170	3680 J
Antimony	0.22 UJ	0.24 UJ	0.27 J	0.32 UJ	0.19 U	0.22 UJ	0.2 U	0.32 J
Arsenic	0.28 U	0.73	0.27 U	0.42 J	0.3 J	0.27 U	0.27 U	0.62 J
Barium	3.9	6	6.3	14	9.5	6.7	7.3	16.7
Beryllium	0.062 U	0.058 U	0.042 J	0.11 U	0.094 J	0.038 U	0.029 J	0.077 J
Cadmium	0.021 U	0.021 U	0.021 U	0.021 U	0.02 U	0.021 U	0.021 U	0.023 U
Calcium	28.4 U	52.7 J	87.6 J	170	17400	152	299	11500
Chromium	2.7	0.85	1.9	9.4	2	3	2.3	4.6
Cobalt	0.086 U	0.19 J	0.083 U	0.4 J	0.12 Ј	0.14 J	0.083 U	0.44 Ј
Copper	0.33 J	0.73	0.88	1.3	0.41 U	0.83	0.84 U	2
Iron	251	365	971	5000	1040	623	1300	2410 J
Lead	3.2 J	3.1 J	3 J	7.4 J	4 J	4.6 J	12.1 J	8.2 J
Magnesium	25.9 J	27.9 J	47.4 J	274	333	65.3 Ј	45.4 J	286
Manganese	0.81 J	17	2.1 J	5.1	9.5 J	2.1	1.3 J	49
Mercury	0.041	0.028 UJ	0.048	0.038	0.044 U	0.053 UJ	0.056 U	0.052
Nickel	0.31 J	0.84	0.64	1.6	0.64	0.91	0.42 J	1.2
Potassium	46.4 J	22.3 J	34.4 J	169 J	45.8 J	73.8 J	35.9 J	139
Sclenium	0.24 U	0.23 U	0.23 UJ	0.36 J	0.22 UJ	0.25 J	0.23 UJ	0.43 J
Silver	0.086 U	0.084 U	0.083 U	0.085 U	0.079 U	0.082 U	0.083 U	0.092 U
Sodium	30.8 U	26.2 U	62.8 U	37.7 U	64.7 U	61.1 U	73.1 U	129 U
Thallium	0.35 UJ	0.35 UJ	0.34 UJ	0.35 UJ	0.32 UJ	0.34 UJ	0.34 UJ	0.38 UJ
Vanadium	3.3	1.2 J	2.8	13.4	2.2 U	3.4	4.1	7.6
Zinc	0.9 U	1.5 U	2.5 U	3.8	2.7	2.8 U	3.5	6

APPENDIX J.1 BASE BACKGROUND

SURFACE SOIL ANALYTICAL RESULTS BACKGROUND STUDY

MCB, CAMP LEJEUNE, NORTH CAROLINA

			MCB, CA	MI LESEONE, NOR	III CAROLINA				
SAMPLE ID	BASE-BG09-00	BASE-BG10-00	BASE-BG11-00	BASE-BG12-00	BASE-BG13-00	BASE-BG14-00	BASE-BG15-00	BASE-BG16-00	
SAMPLE DATE	7/14/00	7/13/00	7/11/00	7/11/00	7/11/00	7/12/00	7/16/00	7/13/00	
METALS (mg/kg)									
Aluminum	190	5390	2540	9130	5390	3770	4730 J	4820	
Antimony	0.26 J	0.19 U	0.42 UJ	0.44 UJ	0.49 J	0.23 UJ	0.3 J	0.34 J	
Arsenic	0.26 U	0.64 J	0.83 J	0.73 J	0.49 J	0.3 U	0.3 U	1	
Barium	1.6	12	14.1	19.6	9.2	12	10	20	
Beryllium	0.02 J	0.07 J	0.11 J	0.14 J	0.09 U	0.098 U	0.1 J	0.072 J	
Cadmium	0.02 U	0.02 U	0.11 J	0.033 U	0.022 U	0.023 U	0.023 U	0.056 J	
Calcium	46.2 U	592	105000	200	75.3 J	344	44.3 J	8720	
Chromium	0.51 J	6.4	9.7	9.6	6.1 J	3.3	5	7.4	
Cobalt	0.082 U	0.34 J	0.3 J	0.45 J	0.31 J	0.1 J	0.51 J	0.29 J	
Copper	2.1	1.5	2.9	2.2	1.6	0.57 J	1.6	5.8	
Iron	126	3830	2420	6050	7900	2910	1220 J	3940	
Lead	2.8	5.4 J	38.5 J	9.9 J	5.4 J	5.1 J	7.9 J	26.8 J	
Magnesium	14 U	146	1610	241	130	114 J	131	330	
Manganese	2.3 U	6.4 J	25.9	7.3	3.1	5.3	2.5	13.6 J	
Mercury	0.053 U	0.05 U	0.069	0.06	0.018 U	0.032 J	0.061	0.26 U	
Nickel	0.092 U	1.4	1.6	1.7	0.83	0.49 J	0.72	1.4	
Potassium	13.2 U	88.4 J	263 J	168 J	162	61.7 J	124	102	
Selenium	0.22 U	0.22 UJ	0.63 J	0.73 Ј	0.38 J	0.42 J	0.8	0.22 UJ	
Silver	0.082 U	0.08 U	0.083 U	0.13 U	0.097 J	0.093 U	0.092 U	1.1	
Sodium	73.7 U	69.1 U	307	46.9 U	39.8 U	38.5 U	102 U	62.2 U	
Thallium	0.34 UJ	0.33 UJ	0.34 UJ	0.55 UJ	0.36 UJ	0.38 UJ	0.38 UJ	0.33 UJ	
Vanadium	1.2 J	9.8	7.7	16.6	12.4 J	4.8	5.6	9.1	
Zinc	1.5 J	3.4	18.4	4.8	4.3	2.8	1 Ј	25.2	

APPENDIX J.1

BASE BACKGROUND

SURFACE SOIL ANALYTICAL RESULTS

BACKGROUND STUDY

MCB, CAMP LEJEUNE, NORTH CAROLINA

SAMPLE ID	BASE-BG17-00	BASE-BG18-00	BASE-BG19-00	BASE-BG20-00	BASE-BG21-00	BASE-BG22-00	BASE-BG23-00	BASE-BG24-00
SAMPLE DATE	7/13/00	7/14/00	7/14/00	7/16/00	7/15/00	7/14/00	7/11/00	7/13/00
METALS (mg/kg)								
Aluminum	2140	894	5680	2520 J	53,9	4270 J	2660	123
Antimony	0.19 U	0.2 U	0.2 U	0.34 J	0.19 U	0.25 J	0.9 J	0.37 UJ
Arsenic	0.26 U	0.27 U	0.83 J	0.29 U	0.26 U	0.85 J	0.28 U	0.27 U
Barium	6.1	2.4	15.2	9.2	2.3	9.2	9.1	3.6
Beryllium	0.047 J	0.01 U	0.075 J	0.061 J	0.016 J	0.038 J	0.066 U	0.013 U
Cadmium	0.02 U	0.021 U	0.021 U	0.022 U	0.02 U	0.02 U	0.021 U	0.021 U
Calcium	49.4 J	44.2 J	726	48.6 J	43.7 U	171	3840	327
Chromium	1.7	0.98	7.2	3.5	0.29 U	4.4	3.3 J	0.42 J
Cobalt	0.081 U	0.083 U	0.21 J	0.17 J	U 80.0	0.19 J	0.2 J	0.083 U
Copper	1.2	1.1	1.5	0.53 U	0.24 U	1.2	18.2	4.1
Iron	858	751	3280	707 J	44	1890 J	1440	106
1.ead	8 J	4 J	11.7	4.3 J	0.45	8.7 J	32.5 J	3 Ј
Magnesium	48.7 J	18.8 J	193	75.2 J	9.5 U	95.9 J	106	56.2
Manganese	8.7 J	2.6 J	5.4 J	1.6	3.3 J	5.5	18.7	3.1
Mercury	0.037 U	0.033 U	0.1 U	0.032 J	0.045 U	0.04	0.028 J	0.036 UJ
Nickel	0.48 J	0.24 J	0.96	0.11 J	0.09 U	0.9	1.8	0.64 U
Potassium	27.6 J	15 J	135	74.2 J	6.5 U	73 J	54.7 J	36.8 J
Selenium	0.22 UJ	0.23 UJ	0.28 J	0.63	0.22 U	0.22 U	0.23 U	0.34 J
Silver	0.081 U	0.083 U	0.084 U	0.089 U	0.08 U	0.081 U	0.085 U	0.083 U
Sodium	55.7 U	53.3 U	82.3 U	103 U	46.5 U	75.8 U	52.4 U	85.7 U
Thallium	0.34 UJ	0.34 UJ	0.35 UJ	0.37 UJ	0.33 UJ	0.33 UJ	0.35 UJ	0.34 UJ
Vanadium	2.4	1.8 J	11.1	4.7	0.44 J	6.8	3.6 J	0.49 J
Zinc	5.2	3	5.2	0.36 J	0.24 U	1.9 J	25.4	10.8

			MCB, CA	MIT LESEUNE, NON	TH CAROLINA			
SAMPLE ID	BASE-BG25-00	BASE-BG26-00	BASE-BG27-00	BASE-BG28-00	BASE-BG29-00	BASE-BG30-00	BASE-BG31-00	BASE-BG32-00
SAMPLE DATE	7/15/00	7/14/00	7/14/00	7/15/00	7/12/00	7/12/00	7/16/00	7/15/00
METALS (mg/kg)								
Aluminum	1460	919	73 J	2870	2070	29.4	6350	1470
Antimony	0.31 J	0.37 J	0.26 J	0.19 U	0.2 UJ	0.22 UJ	0.22 UJ	0.22 U
Arsenic	0.46 J	0.25 U	0.33 U	0.35 J	0.27 U	0.26 U	0.3 U	0.3 U
Barium	5.7	4.3	0.73 J	6.9	5.9	0.28 U	24	2.2
Beryllium	0.082 J	0.026 J	0.013 U	0.05 J	0.038 U	0.018 U	0.08 J	0.033 J
Cadmium	0.02 U	0.019 U	0.026 U	0.056 J	0.021 U	0.02 U	0.023 U	0.023 U
Calcium	112	126	12.4 J	2030	4210	11.8 U	67.8 J	44.7 U
Chromium	1.4	1.3	0.22 U	4.3	2.8	0.17 U	4.1	1.3
Cobalt	0.089 J	0.076 U	0.1 U	0.16 J	0.1 3	0.079 U	0.26 J	0.094 U
Copper	0.97 U	1.3	0.34 U	1.7	1.6	0.9	1.2	0.82 U
Iron	884	456	51.4 J	2200	1660	26.3	2670	1030
Lead	7	3.2	. · I J	3.4	3.8 J	0.53 J	5.7	2.3
Magnesium	88.6 J	29 J	7.2 U	107	92 J	6.9 U	115	38.5 J
Manganese	2.3 J	4.1 J	0.53 U	8.5 J	28	0.29 U	5	9.4 J
Mercury	0.063 U	0.048 U	0.021 J	0.071 U	0.027 UJ	0.017 U	0.12 Ј	0.066 U
Nickel	0.55	0.35 J	0.12 U	0.76	0.73 U	0.088 U	1.4	0.31 J
Potassium	34.2 J	17.6 U	5.8 J	66.3 J	58.9 J	3.8 U	79 J	28.9 J
Selenium	0.32 J	0.21 U	0.28 U	0.37 J	0.23 U	0.22 U	0.25 U	0.26 U
Silver	0.11 J	0.076 U	0.1 U	0.079 U	0.083 U	0.079 U	0.091 U	0.094 U
Sodium	78 U	48.5 U	112 U	49.5 U	50.8 U	28.8 U	78.7 U	94.3 U
Thallium	0.34 UJ	0.32 UJ	0.42 UJ	0.33 UJ	0.34 UJ	0.32 UJ	0.38 UJ	0.39 UJ
Vanadium	3.8	1.5 B	0.36 J	5.2	4.8	0.14 J	6.5	2.3 J
Zinc	5.6	2.7	0.31 U	3.1	5.7	1.1 U	2.8 U	1.8 J

APPENDIX J.1

BASE BACKGROUND

SURFACE SOIL ANALYTICAL RESULTS

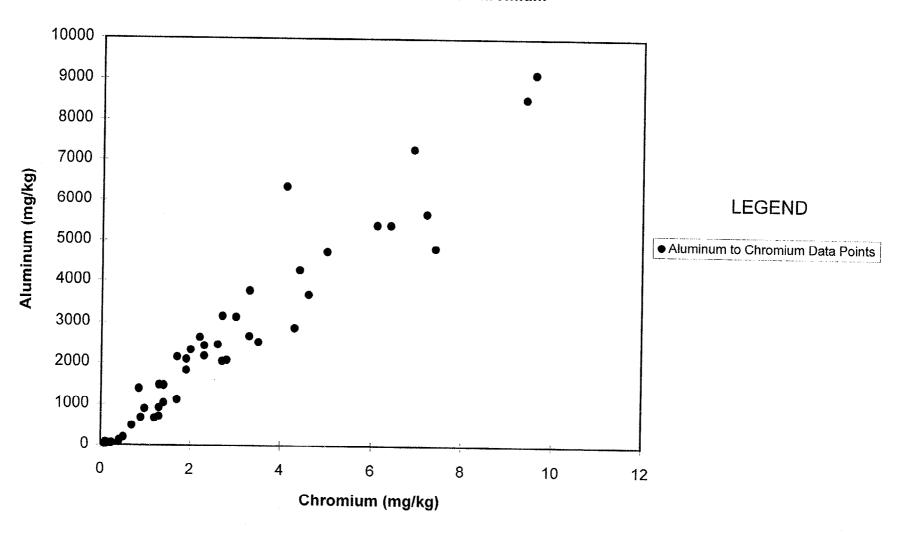
BACKGROUND STUDY

MCB, CAMP LEJEUNE, NORTH CAROLINA

			men, en	mir beobette, non	THE CAROLINA			
SAMPLE ID	BASE-BG33-00	BASE-BG34-00	BASE-BG35-00	BASE-BG36-00	BASE-BG37-00	BASE-BG38-00	BASE-BG39-00	BASE-BG40-00
SAMPLE DATE	7/14/00	7/15/00	7/16/00	7/15/00	7/16/00	7/16/00	7/16/00	7/16/00
METALS (mg/kg)								
Aluminum	31	1820	2630 J	670	2450 J	54.5	1040	17600 J
Antimony	0.2 U	0.28 J	0.46 J	0.28 J	0.55 J	0.2 UJ	0.23 UJ	0.6 J
Arsenic	0.27 U	0.26 U	0.27 U	0.28 U	0.35 U	0.27 U	0.32 U	1.3 J
Barium	0.48 U	3.5	6	2.2	1.6	0.93 J	4.4	15.7
Beryllium	0.018 J	0.036 J	0.06 J	0.033 J	0.014 U	0.01 U	0.012 U	0.53 J
Cadmium	0.021 U	0.02 U	0.021 U	0.022 U	0.027 U	0.021 U	0.037 J	0.033 U
Calcium	37.2 U	67.5 J	423	77.2 J	30.7 J	143	222	80.5 J
Chromium	0.26 U	1.9	2.2	0.9	2.6	0.24 J	1.4	12.6
Cobalt	0.083 U	0.12 J	0.15 J	0.086 U	0.11 U	0.084 U	0.098 U	0.36 J
Copper	0.28 U	2.2	38.5	1.1	1 U	0.43 J	0.88	1.4
Iron	40.2	836	1520 J	434	538 J	40.1	369	12200 J
Lead	1.2	2.6	4.3 J	3.9	2.4 J	0.99	5.8	8.7 J
Magnesium	10.1 U	53.5 J	159	32.1 J	19.8 J	21.6 J	24.7 J	226
Manganese	5.2 Ј	14.2 J	16.9	2.8 J	1 U	0.74 J	1.7	6.3
Mercury	0.036 U	0.063 U	0.04	0.08 U	0.029 Ј	0.051 J	0.086 J	0.11
Nickel	0.093 U	0.53	0.62	0.097 U	0.3 J	0.095 U	0.19 J	1.5
Potassium	10.3 U	29.8 J	47 J	18.8 U	23.7 J	10.2 J	18.7 J	133 J
Selenium	0.23 U	0.22 U	0.46 J	0.24 U	0.31 J	0.23 U	0.27 U	3.4
Silver	0.083 U	0.079 U	0.083 U	0.086 U	0.11 U	0.084 U	0.098 U	0.21 J
Sodium	73.2 U	69.1 U	111 U	67.4 U	127 U	83.6 U	94.8 U	159 U
Thallium	0.34 UJ	0.33 UJ	0.34 UJ	0.36 UJ	0.45 UJ	0.35 UJ	0.4 UJ	0.54 UJ
Vanadium	0.35 J	2.4	2.4	1.5 J	3.7	0.27 J	1.5 J	26.2
Zinc	0.37 U	5.4	3.4	1.3 J	5.3	1.6 U	6.3	2.1 J

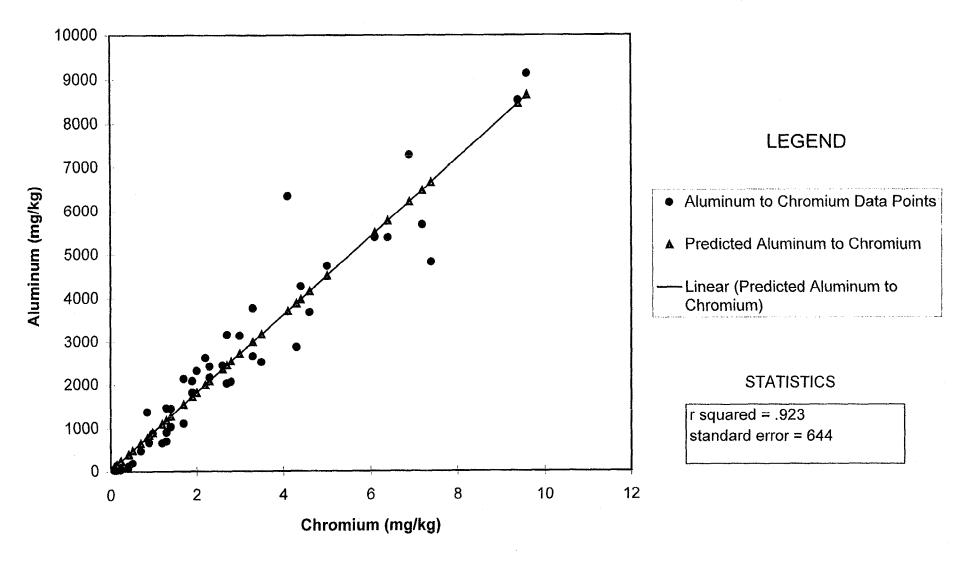
			MCD, CA	IVAL ELEGEOINE, INOX	III CAROLINA			
SAMPLE ID	BASE-BG41-00	BASE-BG42-00	BASE-BG43-00	BASE-BG44-00	BASE-BG45-00	BASE-BG46-00	BASE-BG47-00	BASE-BG48-00
SAMPLE DATE	7/15/00	7/16/00	7/16/00	7/16/00	7/17/00	7/13/00	7/16/00	7/12/00
METALS (mg/kg)								
Aluminum	1120	2420	79.6	3160	664	478	708	40.8
Antimony	0.48 J	0.33 UJ	0.2 UJ	0.2 UJ	0.2 UJ	0.46 J	0.2 UJ	0.2 UJ
Arsenic	0.37 Ј	0.29 U	0.28 U	0.58 Ј	0.27 U	0.27 U	0.27 U	0.27 U
Barium	2.5	4.6	1.1	13.8	2.7	2.1	4.5	0.32 U
Beryllium	0.037 Ј	0.041 J	0.011 U	0.079 J	0.012 J	0.01 U	0.016 Ј	0.015 U
Cadmium	0.064 J	0.022 U	0.021 U	0.021 U	0.021 U	0.021 U	0.02 U	0.021 U
Calcium	402	268	25.3 Ј	56.2 J	72.1 J	58.6 J	176	18 U
Chromium	1.7	2.3	0.41 J	2.7	1.2	0.7	1.3	0.3 U
Cobalt	0.097 U	0.14 Ј	0.085 U	0.13 J	0.084 U	0.083 U	0.11 J	0.083 U
Соррег	1.2	5.4	0.29 J	0.96	0.44 J	4.9	0.89	0.16 U
Iron	724	1090	55.8	1400	346	298	412	34.8
Lead	2.1	3.7	1.5	6.1	1.7	5.5 J	2.4	0.57 J
Magnesium	42.2 J	81.1 J	9.8 J	68.9 J	25.8 J	22.2 J	30.1 J	5.2 U
Manganese	4.5 J	5.8	0.94 J	8.6	2	2 J	8	0.49 U
Mercury	0.05 U	0.059 J	0.047 J	0.096 J	0.06 J	0.038 U	0.058 J	0.017 U
Nickel	0.37 J	0.53 J	0.096 U	0.58	0.094 U	0.15 J	0.44 J	0.093 U
Potassium	21.9 U	33.6 J	13 J	39.7 J	23.6 J	19.4 J	24.7 J	4.7 U
Selenium	0.27 U	0.24 U	0.23 U	0.23 U	0.23 U	0.23 UJ	0.23 U	0.23 U
Silver	0.097 U	0.089 U	0.085 U	0.085 U	0.084 U	0.083 U	0.082 U	0.083 U
Sodium	95.4 U	74.3 U	78.8 U	85.1 U	85.7 U	52.9 U	78.2 U	26.5 U
Thallium	0.4 UJ	0.36 UJ	0.35 UJ	0.35 UJ	0.34 UJ	0.34 UJ	0.34 UJ	0.34 UJ
Vanadium	1.8 J	2 J	0.54 J	3.8	1.6 J	1.2 J	2.7	0.16 J
Zinc	1.5 J	73.9	1.3 U	2.8 ∪	1.6 U	8.5	2 U	0.67 U

SAMPLE ID	BASE-BG49-00	BASE-BG50-00
SAMPLE DATE	7/12/00	7/12/00
METALCOMB		
METALS (mg/kg)	7200	44.2
Aluminum	7280	41.6
Antimony	0.2 UJ	0.27 UJ
Arsenic	0.39 J	0.27
Barium	19.5	0.69 U
Beryllium	0.11 J	0.017 U
Cadmium	0.021 U	0.021 U
Calcium	369	18.3 U
Chromium	6.9	0.45 U
Cobalt	0.37 J	0.083 U
Copper	0.98	0.16 U
Iron	2290	94.5
Lead	5.2 J	1.4 J
Magnesium	222	7.7 U
Manganese	3.7	0.64 J
Mercury	0.023 J	0.02 J
Nickel	1.3	0.094 U
Potassium	212 J	5 U
Selenium	0.23 U	0.23 U
Silver	0.085 U	0.083 U
Sodium	25.3 U	31.8 U
Thallium	0.35 UJ	0.34 UJ
Vanadium	10.5	0.54 J
Zinc	3.2	0.66 U


								, –	KINK DEGE	,				
SAMPLE ID	Minimum		Maximum		Minimum		Maximum		Frequency	Percent	Percent	Arithmatic Mean	Median	Arithmatic Mean
SAMPLE DATE	Non-Detect		Non-Detect		Detected		Detected		of Detection	Detected	Non-Detected	Positive Detects	Positive Detects	Half Non-Detects
METALS (mg/kg)														
Aluminum	0		0		29.4		17600	J	50/50	100%	0%	2743.6	2115	2743.596
Antimony	0.19	U	0.44	UJ	0.25	J	0.9	J	19/50	38%	62%	0.4	0.34	0.2234
Arsenic	0.25	U	0.35	U	0.27		1.3	j	18/50	36%	64%	0.62	0.6	0.3128
Barium	0.28	U	0.69	U	0.73	J	24		46/50	92%	8%	7.84	6.05	7.2349
Beryllium	0.01	U	0.11	U	0.012	J	0.53	J	31/50	62%	38%	0.07	0.05	0.0517
Cadmium	0.019	U	0.033	U	0.037	J	0.11	J	5/50	10%	90%	0.06	0.06	0.0163
Calcium	11.8	U	46.2	U	12.4	j	105000		42/50	84%	16%	3782.68	161	3179.931
Chromium	0.17	U	0.45	U	0.24	J	12.6		44/50	88%	12%	3.42	2.45	3.0271
Cobalt	0.076	U	0.11	U	0.089	J	0.51	J	27/50	54%	46%	0.24	0.19	0.1468
Copper	0.16	U	1	U	0.29	J	38.5		39/50	78%	22%	3.02	1.3	2.4157
Iron	0		0		26.3		12200	J	50/50	100%	0%	1622.64	871	1622.642
Lead	0		0		0.45		38.5	j	50/50	100%	0%	6.14	4	6.1408
Magnesium	5.2	U	14	U	9.8	J	1610		43/50	86%	14%	137.43	75.2	118.798
Manganese	0.29	U	2.3	U	0.64	J	49		45/50	90%	10%	7.58	5.1	6.8707
Mercury	0.017	U	0.26	U	0.02	J	0.12	J	25/50	50%	50%	0.05	0.05	0.0403
Nickel	0.088	U	0.73	U	0.11	j	1.8		37/50	74%	26%	0.79	0.64	0.6056
Potassium	3.8	U	21.9	U	5.8	J	263	J	41/50	82%	18%	69.6	46.4	58.088
Selenium	0.21	U	0.28	U	0.25	j	3.4		16/50	32%	68%	0.63	0.4	0.2814
Silver	0.076	U	0.13	U	0.097	J	1.1		4/50	8%	92%	0.38	0.16	0.0702
Sodium	25.3	U	159	U	307		307		1/50	2%	98%	307	307	40.46
Thallium	0.32	UJ	0.55	UJ	0		0		0/50	0%	100%			0.1799
Vanadium	1.5	В	2.2	U	0.14	J	26.2		48/50	96%	4%	4.6	3.05	4.4488
Zine	0.24	U	2.8	U	0.36	J	73.9		34/50	68%	32%	7.62	3.65	5.4127

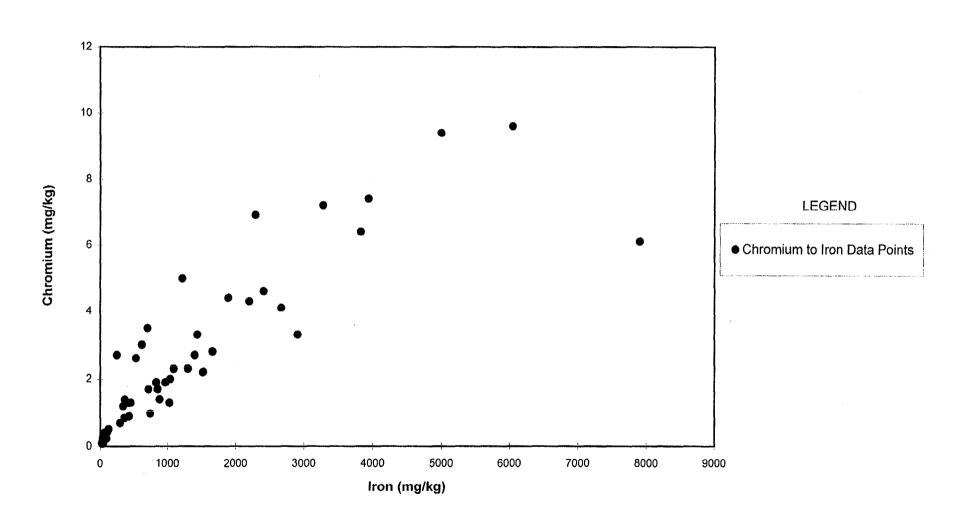
SAMPLE ID	Standard	Upper 95%	Log Arithmatic Mean	-	-	H Statistic		Location of	Location of
SAMPLE DATE	Deviation	Confidence Level	Half Non-Detects	Deviation	Freedom		Confidence Level	Maximum Detect	Maximum Detect
METALS (mg/kg)									
Aluminum	3110.8647	3481.1825	7.08	1.69	49	3.241	10707.0371	BASE-BG40-00	
Antimony	0.1702	0.2638	-1.72	0.64	49	2.038	0.2651	BASE-BG23-00	
Arsenic	0.2831	0.3799	-1.46	0.73	49	2.127	0.3763	BASE-BG40-00	
Barium	6.0747	8.6752	1.47	1.24	49	2.607	14.919	BASE-BG31-00	
Beryllium	0.0765	0.0698	-3.5	1.06	49	2.607	0.078	BASE-BG40-00	
Cadmium	0.0181	0.0206	-4.35	0.54	49	1.957	0.0174	BASE-BG11-00	
Calcium	15029.9662	6743.5381	5.03	2.07	49	4.29	4609.6595	BASE-BG11-00	
Chromium	2.9528	3.7272	0.51	1.28	49	2.915	6.5146	BASE-BG40-00	
Cobalt	0.1324	0.1782	-2.3	0.88	49	2.224	0.1948	BASE-BG15-00	
Copper	5.8703	3.8075	-0.02	1.22	49	2.607	3.2525	BASE-BG35-00	
Iron	2237.2638	2153.0976	6.52	1.54	49	3.241	4532.498	BASE-BG40-00	
Lead	7.4046	7.8964	1.37	0.94	49	2.327	8.3978	BASE-BG11-00	
Magnesium	232.9286	174.0254	3.91	1.39	49	2.915	235.7522	BASE-BG11-00	
Manganese	8.7356	8.9419	1.28	1.25	49	2.607	12.4844	BASE-BG08-00	
Mercury	0.0279	0.0469	-3.42	0.65	49	2.038	0.0489	BASE-BG31-00	
Nickel	0.5229	0.7296	-1.05	1.24	49	2.607	1.1892	BASE-BG23-00	
Potassium	59.7542	72.2557	3.47	1.24	49	2.607	109.2296	BASE-BG11-00	
Selenium	0.4838	0.3961	-1.7	0.75	49	2.127	0.3056	BASE-BG40-00	
Silver	0.151	0.106	-3.01	0.54	49	1.957	0.0659	BASE-BG16-00	
Sodium	41.0675	50.1971	3.51	0.54	49	1.957	45.1389	BASE-BG11-00	
Thallium	0.023	0.1854	-1.72	0.11	49	1.722	0.1848		
Vanadium	4.9645	5.6259	0.89	1.23	49	2.607	8.1581	BASE-BG40-00	
Zinc	11.2736	8.0857	0.78	1.33	49	2.915	9.2173	BASE-BG42-00	

		, , , , , , , , , , , , , , , , , , , ,												
SAMPLE ID	Logno	ormal Distributi	ion	Nore	nal Distributio	n	Sample							
SAMPLE DATE	W-Value	Quantile	True/False	W-Value	Quantile	True/False	Count							
METALS (mg/kg)														
Aluminum	0.86712061	0.947	FALSE	0.765093227	0.947	FALSE	50							
Antimony	0.841064099	0.947	FALSE	0.765392064	0.947	FALSE	50							
Arsenic	0.749309429	0.947	FALSE	0.699446907	0.947	FALSE	50							
Barium	0.90196823	0.947	FALSE	0.89411854	0.947	FALSE	50							
Beryllium	0.948984367	0.947	TRUE	0.509609584	0.947	FALSE	50							
Cadmium	0.498041894	0.947	FALSE	0.400111787	0.947	FALSE	50							
Calcium	0.918735851	0.947	FALSE	0.22926366	0.947	FALSE	50							
Chromium	0.930579654	0.947	FALSE	0.842062495	0.947	FALSE	50							
Cobalt	0.842814356	0.947	FALSE	0.791508452	0.947	FALSE	50							
Copper	0.96344399	0.947	TRUE	0.366753751	0.947	FALSE	50							
Iron	0.943061193	0.947	FALSE	0.683785179	0.947	FALSE	50							
Lead	0.969792821	0.947	TRUE	0.616051125	0.947	FALSE	50							
Magnesium	0.965695836	0.947	TRUE	0.440775444	0.947	FALSE	50							
Manganese	0.978117649	0.947	TRUE	0.69033126	0.947	FALSE	50							
Mercury	0.976029896	0.947	TRUE	0.834654234	0.947	FALSE	50							
Nickel	0.863886396	0.947	FALSE	0.873966858	0.947	FALSE	50							
Potassium	0.956285628	0.947	TRUE	0.818705828	0.947	FALSE	50							
Selenium	0.711588179	0.947	FALSE	0.38012844	0.947	FALSE	50							
Silver	0.414343488	0.947	FALSE	0.210047761	0.947	FALSE	50							
Sodium	0.919574039	0.947	FALSE	0.445239336	0.947	FALSE	50							
Thallium	0.710058727	0.947	FALSE	0.647359048	0.947	FALSE	50							
Vanadium	0.967917168	0.947	TRUE	0.770795328	0.947	FALSE	50							
Zinc	0.982372427	0.947	TRUE	0.442211818	0.947	FALSE	50							

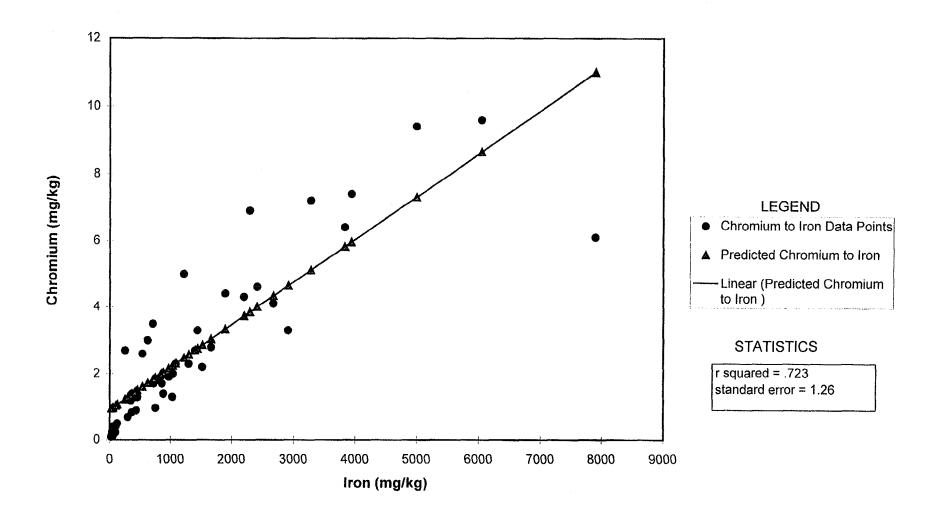

BASE BACKGROUND - COMBINED SURFACE SOILS

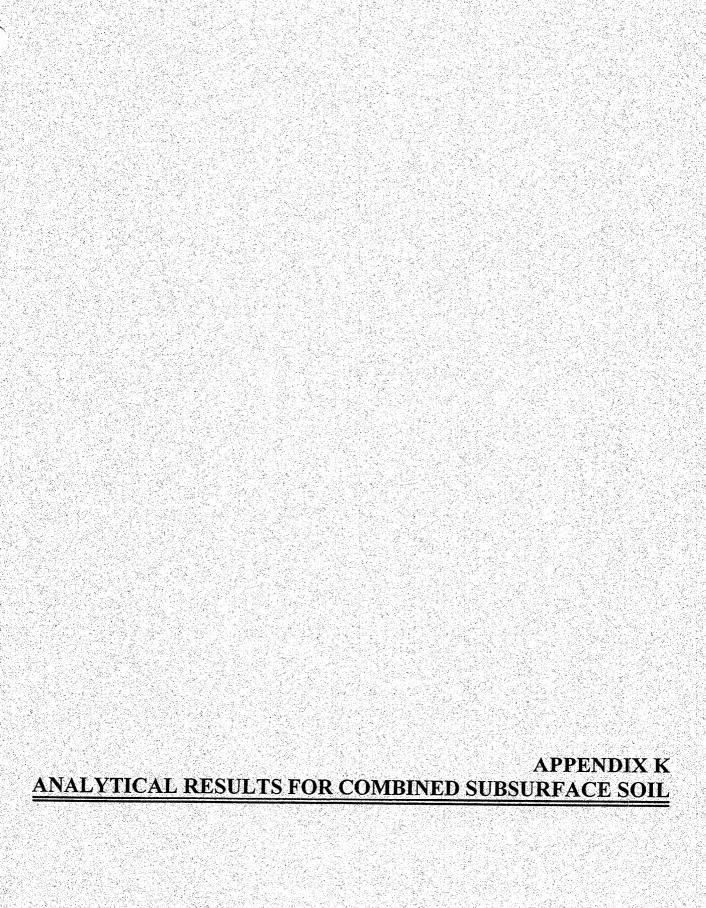
Scatter Plot Aluminum vs. Chromium

BASE BACKGROUND - COMBINED SURFACE SOILS


Regression Plot Aluminum vs. Chromium

APPENDIX J GRAPH 3


BASE BACKGROUND - COMBINED SURFACE SOILS


Scatter Plot Chromium vs. Iron

BASE BACKGROUND - COMBINED SURFACE SOILS

Regression Plot Chromium vs. Iron

SAMPLE ID SAMPLE DATE	BASE-BG01-02 7/11/00	BASE-BG02-03 7/13/00	BASE-BG03-02 7/13/00	BASE-BG04-02 7/11/00	BASE-BG05-02 7/13/00	BASE-BG06-05 7/13/00	BASE-BG07-03 7/13/00	BASE-BG08-05 7/16/00	BASE-BG09-05 7/14/00
METALS (mg/kg)									
Aluminum	2830	6000	10700	4660	10900	3330	6860	1570 J	7640
Antimony	0.25 UJ	0.29 UJ	0.24 U	0.43 UJ	0.24 U	0.2 UJ	0.28 J	0.41 J	0.22 U
Arsenic	0.29 U	1 J	8.3	0.3 U	9.3	1.1	0.3 U	0.3 U	0.3 U
Barium	5.2	12.7	21.4	10.5	13.4	18.2	11.1	3.4	7.9
Beryllium	0.057 U	0.092 U	0.19 J	0.069 U	0.16 J	0.069 U	0.13 J	0.012 U	0.097 J
Cadmium	0.022 U	0.024 U	0.025 U	0.023 U	0.025 U	0.021 U	0.023 U	0.023 U	0.023 U
Calcium	16.1 U	235	172	104 J	1800	61.3 J	42.9 J	22.8 J	39.4 U
Chromium	2.8	13.2	20.8	5.6	19.3	5.2	9.3	3.2	7.5
Cobalt	0.088 U	0.14 J	0.47 J	0.22 J	0.46 J	0.1 J	1.1	0.092 U	0.35 J
Copper	0.16 U	1.8	3.6	0.44 J	3.9	1.4	1.8	0.48 U	0.72 U
Iron	322	3020	13300	1290	14000	2410	1450	1130 J	1330
Lead	3.1 J	8.6 J	10.7 J	5.2 J	10.7 J	3 J	6.6 J	2.5 J	5.1
Magnesium	62.3 J	323	572	151	568	78.1 J	212	63.3 J	214
Manganese	1.1	3.5	5.1 J	3	5.9 J	1.4	3.4 J	2	3.7 J
Mercury	0.041	0.032 UJ	0.09	0.03 J	0.045	0.028 UJ	0.036 U	0.029 J	0.055 U
Nickel	0.33 J	0.86	1.1	0.76	1.1	0.53 U	1.4	0.1 U	1.2
Potassium	45.7 J	303 J	565	131 J	518	66 J	275	57.9 J	292
Selenium	0.25 J	0.26 U	0.51 J	0.26 U	0.59 J	0.27 Ј	0.25 UJ	0.4 J	0.25 U
Silver	0.088 U	0.096 U	0.15 J	0.094 U	0.19 J	0.082 U	0.092 U	0.092 U	0.091 U
Sodium	29.2 U	68 U	86.2 U	38.4 U	63.8 U	49.6 U	98.3 U	102 U	51.2 U
Thallium	0.36 UJ	0.4 UJ	0.42 UJ	0.39 UJ	0.42 UJ	0.34 UJ	0.38 UJ	0.38 UJ	0.38 UJ
Vanadium	3	9.3	31.9	5.1	32	7.4	9.7	7.7	6.3
Zinc	2.1 U	4.2	6.4	2.9 U	6.5	2.4 U	4.3	0.28 U	4.2

SAMPLE ID	BASE-BG10-03	BASE-BG11-03	BASE-BG12-04	BASE-BG13-03	BASE-BG14-01	BASE-BG15-03	BASE-BG16-04	BASE-BG17-04	BASE-BG18-02
SAMPLE DATE	7/13/00	7/11/00	7/11/00	7/11/00	7/12/00	7/16/00	7/13/00	7/13/00	7/14/00
METALS (mg/kg)									
Aluminum	1410	8800	1740	14900	4500	15600 J	1200	6850	260 J
Antimony	0.35 J	0.28 UJ	0.21 UJ	0.23 UJ	0.34 UJ	0.5 J	0.23 U	0.2 UJ	0.2 UJ
Arsenic	0.27 U	3.9	0.29 U	0.55 J	0.29 U	8.1	0.32 U	0.43 J	0.28 U
Barium	2	15.7	3.9	14.6	15.6	22.4	3.2	8.2	1.2
Beryllium	0.028 J	0.24 J	0.035 U	0.26 J	0.1 U	0.26 J	0.024 J	0.098 U	0.011 U
Cadmium	0.021 U	0.025 U	0.022 U	0.024 U	0.022 U	0.026 U	0.024 U	0.022 U	0.022 U
Calcium	63.2 J	148	29.7 U	112 J	4950	30.4 J	73.6 J	181	12.7 J
Chromium	1.6	22.6	1.8	15.9 J	4.6	23.3	1.6	9.3	0.83
Cobalt	0.083 U	0.32 Ј	0.11 J	0.67	0.23 J	0.71	0.098 U	0.32 J	0.087 U
Copper	0.3 U	4.2	0.24 J	3.2	1.2	3.5	0.31 U	0.85	0.43 U
Iron	356	5050	329	4100	2720	12000 J	481	1420	121 J
Lead	1.9 J	10 J	1.9 J	7.5 J	8.7 J	12.2 J	1.8 J	4.8 J	1.3 J
Magnesium	46.9 J	264	44.7 J	343	190	617	38.5 J	242	16.8 J
Manganese	1.3 J	4.5	2	5.2	17.2	6.7	1.6 J	3	1.9
Mercury	0.027 U	0.044 J	0.022 J	0.02 U	0.027 J	0.036 J	0.027 U	0.032 UJ	0.019 U
Nickel	0.2 Ј	1.2	0.37 Ј	1.6	1	2	0.34 J	0.93	0.097 U
Potassium	32 J	869 J	53.6 J	644	102 J	784	31.8 J	269 J	17.6 J
Selenium	0.23 UJ	0.49 J	0.24 U	0.26 U	0.3 J	1.3	0.27 UJ	0.24 U	0.24 U
Silver	0.083 U	0.1 U	0.088 U	0.096 U	0.088 U	0.36 J	0.098 U	0.086 U	0.087 U
Sodium	64.6 U	41 U	34.7 U	47.1 U	45.6 U	140 U	71.3 U	56.6 U	80.2 U
Thallium	0.34 UJ	0.42 UJ	0.36 UJ	0.4 UJ	0.36 UJ	0.42 UJ	0.4 UJ	0.35 UJ	0.36 UJ
Vanadium	1.7 J	24.2	1.9 J	13.6 J	7.2	39	2.3 J	8.8	0.75 J
Zinc	1.2 U	4.8	1.6 U	11.8	6.9	6.4	1.3 U	3.1 U	0.26 U

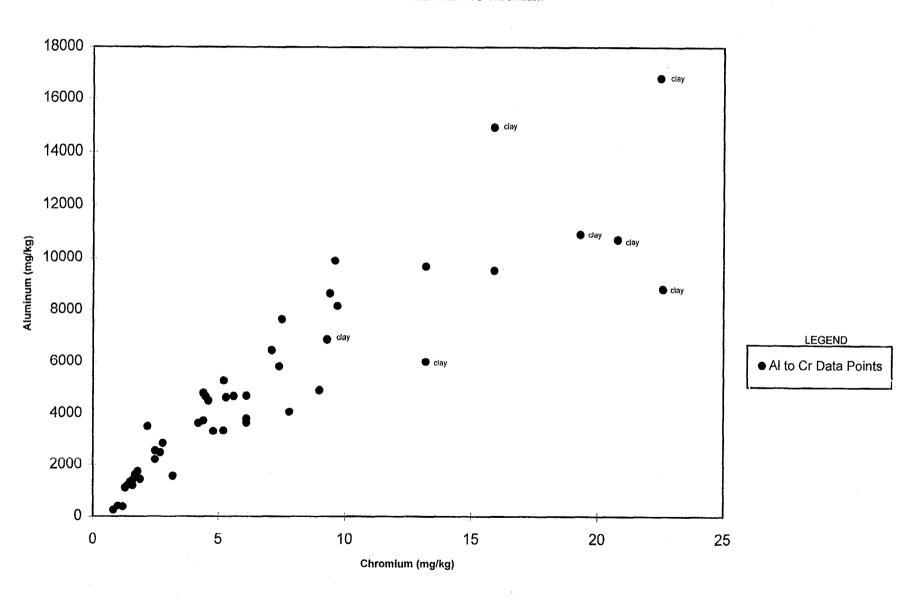
SAMPLE ID SAMPLE DATE	BASE-BG19-04 7/14/00	BASE-BG20-01 7/16/00	BASE-BG21-02 7/15/00	BASE-BG22-04 7/14/00	BASE-BG23-01 7/11/00	BASE-BG24-01 7/13/00	BASE-BG25-01 7/14/00	BASE-BG26-03 7/14/00	BASE-BG27 7/14/00
METALS (mg/kg)									
Aluminum	4620	4070 J	8640	5810 J	9900	5260	1340	3630	4640 J
Antimony	0.21 U	0.23 UJ	0.22 U	0.31 J	0.31 J	0.22 U	0.2 J	0.32 J	0.4 J
Arsenic	0.88 J	0.31 U	0.3 U	0.28 U	0.92 J	0.31 U	0.27 U	0.28 U	0.34 J
Barium	5.3	10.4	7.1	7.4	13.9	3.2	4	6.8	15.3
Beryllium	0.058 J	0.062 J	0.081 J	0.07 J	0.095 U	0.023 J	0.028 Ј	0.049 J	0.07 Ј
Cadmium	0.022 U	0.024 U	0.023 U	0.022 U	0.022 U	0.024 U	0.021 U	0.022 U	0.021 U
Calcium	26.8 U	87.2 J	38.5 U	41.6 J	499	13 U	83.8 J	44.2 U	71.3 J
Chromium	5.3	7.8	9.4	7.4	9.6 J	5.2	1.5	4.2	4.5
Cobalt	0.14 J	0.21 J	0.74	0.22 J	0.84	0.25 J	0.084 U	0.2 J	0.6
Copper	0.7 U	0.95	0.66 U	0.94 U	3.1	0.43 U	0.25 J	2.8	1.7
Iron	1580	840 J	1770	877 J	4600	1370	953	1530	3440 J
Lead	3.3	5.1 J	6	4.1 J	4 J	2.6 J	1.9	2.8	3.5 J
Magnesium	130	144	193	166	197	55.2 J	65.5 J	101 J	216
Manganese	2 J	4.7	5.9	2.8	4.5	1 J	2.2	2.4 J	7.1
Mercury	0.047 U	0.031 J	0.061	0.018 U	0.024 J	0.051 U	0.025 J	0.054 U	0.022 Ј
Nickel	0.55 J	0.39 J	1.9	0.37 J	3.6	2	0.44 J	0.95	1.6
Potassium	130	176	190	235	189	33.6 J	33.4 J	64.2 J	121
Selenium	0.26 J	0.44 J	0.25 U	0.24 J	0.24 U	0.26 UJ	0.23 U	0.24 U	0.32 J
Silver	0.089 U	0.095 U	0.092 U	0.086 U	0.087 U	0.094 U	0.084 U	0.087 U	0.085 U
Sodium	44.6 U	116 U	83.9 U	87.2 U	40.7 U	62.8 U	89.6 U	55 U	65.2 U
Thallium	0.37 UJ	0.39 UJ	0.38 UJ	0.36 UJ	0.36 UJ	0.39 UJ	0.34 UJ	0.36 UJ	0.35 UJ
Vanadium	7.6	13.7	7.1	8.6	11.7 J	9.9	2.4	5.4	8.9
Zinc	1.5 J	0.33 J	3.4	0.84 J	5.1	1.3 U	1.3 U	2.5	1.8 J

SAMPLE ID SAMPLE DATE	BASE-BG28-02 7/15/00	BASE-BG29-02 7/12/00	BASE-BG30-01 7/12/00	BASE-BG31-04 7/16/00	BASE-BG32-03 7/15/00	BASE-BG33-02 7/14/00	BASE-BG34-03 7/15/00	BASE-BG35-01 7/16/00	BASE-BG36-01 7/15/00
METALS (mg/kg)									
Aluminum	16800	8160	3800	407	2540	1100 J	2200	1210 J	9670
Antimony	0.47 J	0.23 UJ	0.22 UJ	0.21 UJ	0.24 U	0.26 J	0.28 Ј	0.23 Ј	0.2 U
Arsenic	1.9	0.42 J	0.28 U	0.28 U	0.32 U	0.32 U	0.27 U	0.28 U	1.4
Barium	23.1	16.6	1.8	1.4	0.92 J	1.6	4	3.2	12.7
Beryllium	0.15 J	0.12 U	0.047 U	0.011 U	0.16 J	0.012 U	0.038 J	0.015 J	0.068 J
Cadmium	0.023 U	0.024 U	0.022 U	0.022 U	0.025 U	0.025 U	0.021 U	0.021 U	0.021 U
Calcium	557	98.7 J	14.5 U	21.3 J	35.6 U	9.1 U	44.2 U	112	66.7 J
Chromium	22.5	9.7	6.1	1	2.5	1.3	2.5	1.4	13.2
Cobalt	0.68	0.43 J	0.087 U	0.087 U	0.14 J	0.16 J	0.24 J	0.085 U	1
Copper	3	1.9	0.58	0.47 J	1.6	0.72 U	0.53 U	0.67	1 U
Iron	15600	4120	93.1	222	102	485 J	624	715 J	4310
Lead	8.1	6.2 J	3.6 J	1.6	Ĭ	1.1 J	1.4	1.7 J	5.2
Magnesium	525	266	16.9 J	22.6 J	12.3 U	39 J	86.3 J	54.8 J	209
Manganese	6.9 1	3.9	0.75 J	i j	3.5 J	2.3	3.9 1	2.7	4.2 J
Mercury	0.057 U	0.026 UJ	0.039	0.042 J	0.067 U	0.021 J	0.053 U	0.025 J	0.081 U
Nickel	2.8	1.4	0.26 J	0.098 U	0.11 U	0.64	0.66	0.096 U	3
Potassium	434	264 J	28.5 J	22.6 J	17.2 U	22.4 J	51.1 J	37.2 J	124
Selenium	0.77	0.42 J	0.31 J	0.24 U	0.27 J	0.29 J	0.23 U	0.24 U	0.46 J
Silver	0.24 J	0.097 U	0.087 U	0.087 U	0.099 U	0.1 U	0.082 U	0.085 U	0.1 J
Sodium	59.4 U	53.3 U	28.7 U	72.3 U	59.5 U	84.3 U	64.7 U	101 U	57.5 U
Thallium	0.38 UJ	0.4 UJ	0.36 UJ	0.36 U	0.41 UJ	0.41 UJ	0.34 UJ	0.35 UJ	0.35 UJ
Vanadium	33.9	14	3	1.1 J	0.35 J	1.4 J	2.3	1.4 J	11.9
Zinc	7.4	6.1	0.84 U	1.3 U	0.31 U	0.3 U	1.1 J	0.26 U	2.3

					•				
SAMPLE ID SAMPLE DATE	BASE-BG37 7/16/00	BASE-BG38-01 7/16/00	BASE-BG39-01 7/16/00	BASE-BG40-01 7/16/00	BASE-BG41-01 7/15/00	BASE-BG42-01 7/16/00	BASE-BG43-03 7/16/00	BASE-BG44-03 7/16/00	BASE-BG45-01 7/17/00
METALS (mg/kg)									
Aluminum	3720 J	372	2470 Ј	4780	3310	3500	1620	6450	4890
Antimony	0.22 UJ	0.23 UJ	0.27 Ј	0.23 UJ	0.24 U	0.22 UJ	0.2 UJ	0.26 UJ	0.22 UJ
Arsenic	0.3 U	0.32 U	0.31 U	0.32 U	0.43 J	0.37 J	0.27 U	0.3 U	3.2
Barium	4.2	0.67 J	4	5.7	3.1	5.9	1.8	8	5.7
Beryllium	0.012 U	0.012 U	0.013 J	0.036 J	0.046 J	0.054 J	0.01 U	0.04 J	0.042 Ј
Cadmium	0.023 U	0.025 U	0.024 U	0.025 U	0.025 U	0.023 U	0.021 U	0.023 U	0.023 U
Calcium	29.2 J	41.6 J	28 J	37.3 J	82.6 J	159	28.3 J	42.7 J	42 J
Chromium	4.4	1.2	2.7	4.4	4.8	2.2	1.7	7.1	9
Cobalt	0.23 J	0.098 U	0.14 J	0.41 J	0.099 U	0.092 U	0.11 J	0.26 Ј	0.13 J
Copper	0.43 U	0.23 J	0.44 U	0.59 J	0.48 U	3.3	1.2	0.75	0.72
Iron	1380 J	81.5	626 J	1440	776	1120	611	1720	2490
Lead	2.6 J	1.6	2.2 Ј	2.6	3.3 J	3.5	1.5	3.2	4.2
Magnesium	106 J	13.5 J	87.1 J	123 J	24.4 J	87 J	30.1 J	167	168
Manganese	2	1.1 J	1.8	1.9	0.74 J	4.2	1.3	2.6	2.6
Mercury	0.026 J	0.06 J	0.021 J	0.085 J	0.072 U	0.061 J	0.055 J	0.054 J	0.16 J
Nickel	0.94	0.11 U	0.12 J	1.2	0.42 J	0.52 J	0.71	0.8	0.5 J
Potassium	66.9 J	16 J	44.8 J	63.5 J	17.4 J	31 J	22.4 J	121 J	120 J
Selenium	0.47 J	0.27 U	0.26 U	0.27 U	0.27 UJ	0.25 U	0.23 U	0.25 U	0.26 U
Silver	0.093 U	0.098 U	0.094 U	0.098 U	0.099 U	0.092 U	0.083 U	0.092 U	0.093 U
Sodium	97 U	92 U	80.1 U	87.3 U	59.9 U	90.3 U	80.8 U	98.7 U	101 U
Thallium	0.38 UJ	0.41 UJ	0.39 UJ	0.4 UJ	0.41 UJ	0.38 UJ	0.34 UJ	0.38 UJ	0.38 UJ
Vanadium	4.6	0.6 J	2.6	5.7	2 Ј	2 ј	1.7 J	7.1	6.6
Zinc	0.28 U	2 U	0.28 U	2.6 U	1 U	7.9	2.1 U	4.2	3.3

SAMPLE ID SAMPLE DATE	BASE-BG46-02 7/13/00	BASE-BG47-04 7/16/00	BASE-BG48-01 7/12/00	BASE-BG49-02 7/12/00	BASE-BG50-01 7/12/00
METALS (mg/kg)					
Aluminum	1450	5290	3640	9510	4680
Antimony	0.23 U	0.24 UJ	0.4 UJ	0.23 UJ	0.35 UJ
Arsenic	0.32 U	3.3	0.28 U	2.6	0.3 U
Barium	1.4	27.1	1.8	12.1	3.3
Beryllium	0.039 J	0.91	0.041 U	0.22 J	0.035 U
Cadmium	0.025 U	0.025 U	0.022 U	0.024 U	0.023 U
Calcium	12.6 U	458	21.3 U	256	16.9 U
Chromium	1.9	11.3	6.1	15.9	6.1
Cobalt	0.098 U	6.8	0.086 U	0.39 J	0.41 J
Copper	0.27 U	6.7	0.52 J	2.2	0.17 U
Iron	1250	8450	251	6550	1160
Lead	1.8 J	5.4	3.4 J	5.3 J	2.8 J
Magnesium	14.9 Ј	1250	28.7 J	367	58.6 J
Manganese	0.57 J	67.6	1.1	5.7	3.7
Mercury	0.042 U	0.059 J	0.044	0.034 J	0.042
Nickel	0.13 J	12.3	0.51 J	0.97	2
Potassium	11.9 J	668 J	34.3 J	546 J	46.4 J
Selenium	0.27 UJ	0.3 J	0.32 Ј	0.27 U	0.25 U
Silver	0.098 U	0.1 J	0.086 U	0.12 J	0.092 U
Sodium	62 U	66.4 U	37.1 U	37 U	33.5 U
Thallium	0.41 UJ	0.42 UJ	0.36 UJ	0.4 UJ	0.38 UJ
Vanadium	3.2	11.1	3	17.1	6.4
Zinc	1 U	39.7	1.5 U	5	1.9 U

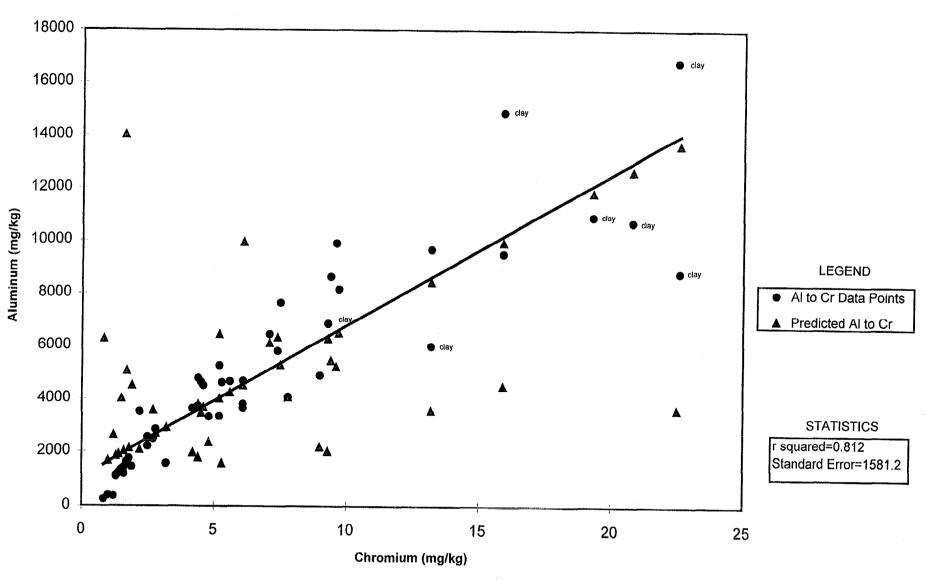
SAMPLE ID SAMPLE DATE	Minimum Non-Detect		Maximum Non-Detect		Minimun Detected		Maximun Detected	1	Frequency of Detection	Percentage of Detection	Percentage of Non-Detects	Arithmatic Mean Positive Detects	Median Positive Detects	Arithmatic Mean Half Non-Detects	Standard Deviation	Upper 95% Confidence Level
METALS (mg/kg)																
Aluminum	0		0		260	j	16800		50/50	100%	0%	5184.58	4560	5184.58	3937.9634	6118.2717
Antimony	0.2	UJ	0.43	UJ	0.2	J	0.5	J	14/50	28%	72%	0.33	0.31	0.1799	0.1062	0.2051
Arsenic	0.27	U	0.32	U	0.34	J	9.3		19/50	38%	62%	2.55	1.1	1.0604	2.1143	1.5617
Barium	0		0		0.67	J	27.1		50/50	100%	0%	8.28	5.8	8.2818	6.6886	9.8677
Beryllium	0.01	U	0.12	U	0.013	J	0.91		31/50	62%	38%	0.12	0.06	0.0826	0.1377	0.1152
Cadmium	0.021	U	0.026	U	0		0		0/50	0%	100%			0.0115	0.0007	0.0117
Calcium	9.1	U	44.2	U	12.7	J	4950		36/50	72%	28%	301.45	78.1	220.663	734.2166	394.7459
Chromium	0		0		0.83		23.3		50/50	100%	0%	7.25	5.25	7.2466	6.2017	8.717
Cobalt	0.083	U	0.099	U	0.1	J	6.8		36/50	72%	28%	0.55	0.29	0.4112	0.9595	0.6387
Copper	0.16	U	1	U	0.23	J	6.7		32/50	64%	36%	1.86	1.5	1.2789	1.4291	1.6177
Iron	0		0		81.5		15600		50/50	100%	0%	2719.31	1350	2719.312	3724.1334	3602.3045
Lead	0		0		t		12.2	J	50/50	100%	0%	4.24	3.35	4.244	2.7984	4.9075
Magnesium	12.3	U	12.3	U	13.5	j	1250		49/50	98%	2%	184.88	123	181.307	217.4064	232.8541
Manganese	0		0		0.57	J	67.6		50/50	100%	0%	4.62	2.75	4.6232	9.466	6.8676
Mercury	0.018	U	0.081	U	0.021	J	0.16	J	30/50	60%	40%	0.05	0.04	0.0355	0.0254	0.0415
Nickel	0.096	U	0.53	U	0.12	J	12.3		43/50	86%	14%	1.3	0.93	1.1328	1.7988	1.5593
Potassium	17.2	υ	17.2	υ	11.9	J	869	J	49/50	98%	2%	184.13	66.9	180.616	220.0776	232.7964
Selenium	0.23	U	0.27	U	0.24	J	1.3		21/50	42%	58%	0.43	0.32	0.2524	0.215	0.3034
Silver	0.082	U	0.1	U	0.1	J	0.36	J	7/50	14%	86%	0.18	0.15	0.0644	0.0576	0.0781
Sodium	28.7	U	140	U	0		0		0/50	0%	100%			34.166	12.3326	37.0901
Thallium	0.34	UJ	0.42	UJ	0		0		0/50	0%	100%			0.1898	0.0126	0.1928
Vanadium	0		0		0.35	J	39		50/50	100%	0%	8.6	6.5	8.604	9.0457	10.7487
Zinc	0.26	U	3.1	U	0.33	j	39.7		25/50	50%	50%	5.92	4.3	3.2935	5.8935	4.6908


SAMPLE ID SAMPLE DATE	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	Degree of Freedom	H Statistic	Log Upper 95% Confidence Level	Location of Maximum Detect
METALS (mg/kg)						
Aluminum	8.22	0.94	49	2.327	7812.3412	BASE-BG28-02
Antimony	-1.85	0.49	49	1.884	0.2024	BASE-BG15-03
Arsenic	-1.05	1.3	49	2.915	1.4006	BASE-BG05-02
Barium	1.74	0.94	49	2.327	12.0953	BASE-BG47-04
Beryllium	-3.18	1.17	49	2.607	0.1274	BASE-BG47-04
Cadmium	-4.46	0.06	49	1.687	0.0117	
Calcium	3.95	1.45	49	2.915	273.1219	BASE-BG14-01
Chromium	1.61	0.91	49	2.327	10.2123	BASE-BG15-03
Cobalt	-1.67	1.15	49	2.607	0.5577	BASE-BG47-04
Copper	-0.37	1.16	49	2.607	2.0838	BASE-BG47-04
Iron	7.16	1.29	49	2.915	5086.9045	BASE-BG28-02
Lead	1.25	0.64	49	2.038	5.146	BASE-BG15-03
Magnesium	4.63	1.15	49	2.607	301.3412	BASE-BG47-04
Manganese	1.03	0.83	49	2.224	5.1528	BASE-BG47-04
Mercury	-3.52	0.59	49	1.957	0.0417	BASE-BG45-01
Nickel	-0.54	1.24	49	2.607	2.009	BASE-BG47-04
Potassium	4.49	1.23	49	2.607	301.2788	BASE-BG11-03
Selenium	-1.6	0.62	49	2.038	0.2934	BASE-BG15-03
Silver	-2.91	0.48	49	1.884	0.0693	BASE-BG15-03
Sodium	3.46	0.38	49	1.821	37.862	
Thallium	-1.66	0.07	49	1.687	0.1929	
Vanadium	1.66	1.07	49	2.607	13.7991	BASE-BG15-03
Zinc	0.33	1.37	49	2.915	6.3371	BASE-BG47-04

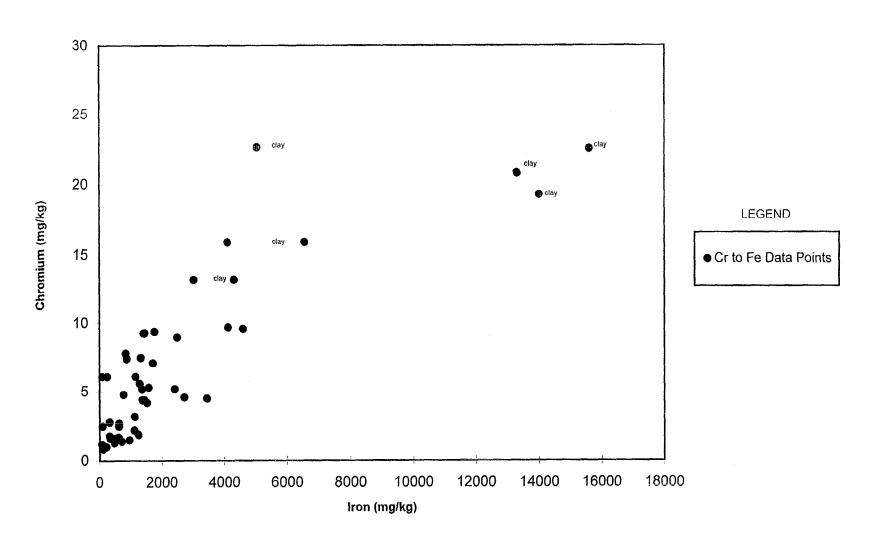
	Lognormal Distribution			No	mal Distribution		Sample
	W-Value	Quantile	True/False	W-Value	Quantile	True/False	Count
METALS (mg/kg)							
Aluminum	0.938935839	0.947	FALSE	0.890245967	0.947	FALSE	50
Antimony	0.798671016	0.947	FALSE	0.7379857	0.947	FALSE	50
Arsenic	0.723049774	0.947	FALSE	0.501206701	0.947	FALSE	50
Barium	0.957116676	0.947	TRUE	0.882739321	0.947	FALSE	50
Beryllium	0.961181457	0.947	TRUE	0.515727091	0.947	FALSE	50
Cadmium	0.901351421	0.947	FALSE	0.901030224	0.947	FALSE	50
Calcium	0.956844344	0.947	TRUE	0.30226586	0.947	FALSE	50
Chromium	0.95611354	0.947	TRUE	0.833532713	0.947	FALSE	50
Cobalt	0.922955365	0.947	FALSE	0.348776269	0.947	FALSE	50
Copper	0.947936191	0.947	TRUE	0.780722537	0.947	FALSE	50
Iron	0.968121166	0.947	TRUE	0.661037943	0.947	FALSE	50
Lead	0.968627999	0.947	TRUE	0.868816045	0.947	FALSE	50
Magnesium	0.983968535	0.947	TRUE	0.707759125	0.947	FALSE	50
Manganese	0.941077127	0.947	FALSE	0.330248647	0.947	FALSE	50
Mercury	0.982093224	0.947	TRUE	0.764068056	0.947	FALSE	50
Nickel	0.939729418	0.947	FALSE	0.505385516	0.947	FALSE	50
Potassium	0.952128561	0.947	TRUE	0.740526038	0.947	FALSE	50
Selenium	0.804523777	0.947	FALSE	0.667551305	0.947	FALSE	50
Silver	0.547267945	0.947	FALSE	0.434967266	0.947	FALSE	50
Sodium	0.966272501	0.947	TRUE	0.962778232	0.947	TRUE	50
Thallium	0.918769864	0.947	FALSE	0.91865079	0.947	FALSE	50
Vanadium	0.972159628	0.947	TRUE	0.753542396	0.947	FALSE	50
Zinc	0.952978221	0.947	TRUE	0.497486188	0.947	FALSE	50
Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	0.941077127 0.982093224 0.939729418 0.952128561 0.804523777 0.547267945 0.966272501 0.918769864 0.972159628	0.947 0.947 0.947 0.947 0.947 0.947 0.947	FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE	0.330248647 0.764068056 0.505385516 0.740526038 0.667551305 0.434967266 0.962778232 0.91865079 0.753542396	0.947 0.947 0.947 0.947 0.947 0.947 0.947	FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE	50 50 50 50 50 50 50 50

APPENDIX K GRAPH 1

BASE BACKGROUND - COMBINED SUBSURFACE

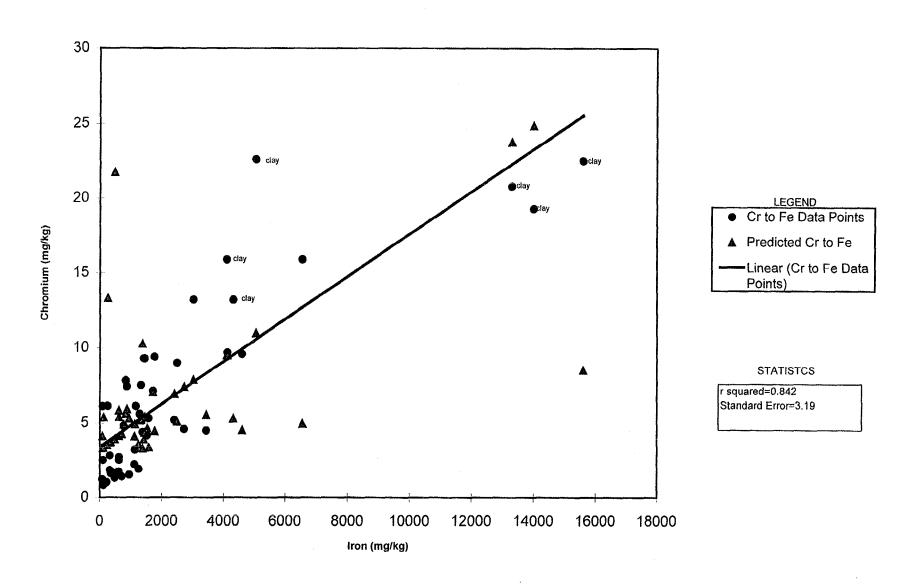

Scatter Plot Aluminum vs Chromium

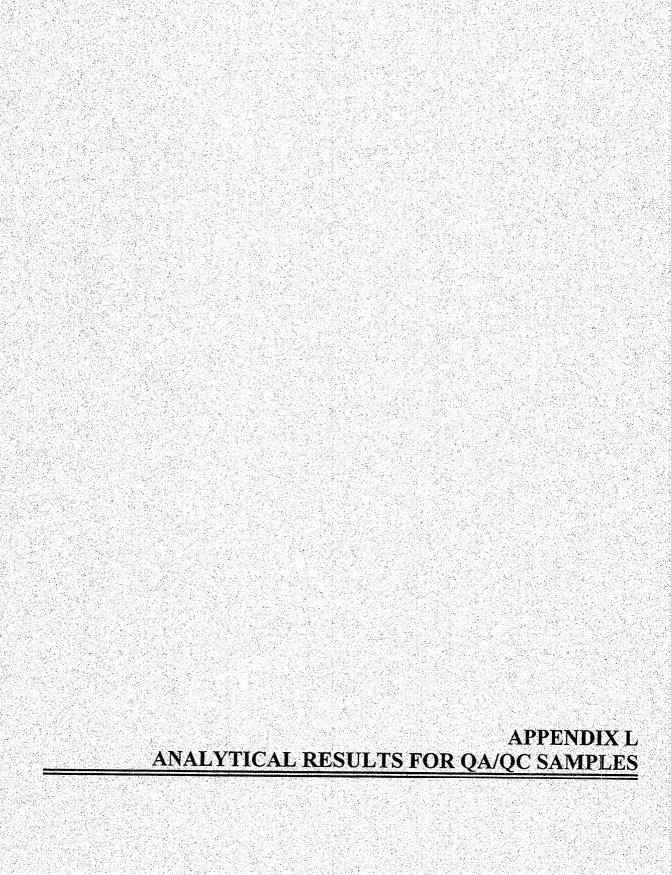
APPENDIX K GRAPH 2


BASE BACKGROUND - COMBINED SUBSURFACE

Linear Regression
Aluminum vs Chromium

APPENDIX K GRAPH 3


BASE BACKGROUND - COMBINED SUBSURFACE Scatter Plot Chromium vs Iron



APPENDIX K GRAPH 4

BASE BACKGROUND - COMBINED SUBSURFACE

Linear Regression Chromium vs Iron

APPENDIX L
BLANK ANALYTICAL RESULTS
BACKGROUND STUDY
MCB, CAMP ŁEJEUNE, NORTH CAROLINA
CTO-0371

SAMPLE ID SAMPLE DATE	BASE-BG04-00D 7/11/00	BASE-BG07-00D 7/13/00	BASE-BG17-04D 7/13/00	BASE-BG18-00D 7/14/00	BASE-BG22-04D 7/14/00	BASE-BG33-00D 7/14/00	BASE-BG39-01D 7/16/00
METALS (mg/kg)							
Aluminum	9630	1350	3090	1810	4410 J	89	5860 J
Antimony	0.35 UJ	0.23 J	0.23 U	0.2 U	0.24 J	0.24 U	0.31 J
Arsenic	0.83 J	0.27 U	0.31 U	0.27 U	0.26 U	0.33 U	0.32 U
Barium	16.5	5.1	3.9	3.2	6.2	0.79 J	8.2
Beryllium	0.12 J	0.029 J	0.036 J	0.023 J	0.039 J	0.021 J	0.012 U
Cadmium	0.022 U	0.021 U	0.024 U	0.021 U	0.02 U	0.025 U	0.025 U
Calcium	223	220	75.7 J	38.1 J	22 J	45 U	19.4 J
Chromium	10.1	1.6	4	1.5	5.1	0.45 U	5.4
Cobalt	0.42 J	0.084 U	0.13 J	0.084 U	0.15 J	0.1 U	0.19 J
Copper	1.3	0.4 U	0.75 U	0.59	0.89 U	0.51 U	0.87 U
Iron	6770	1060	604	1210	642 J	102	1540 J
Lead	7.4 Ј	6.2 J	3.2 Ј	2.9 J	3.1 J	2.5	4.1 J
Magnesium	289	25.7 Ј	96.8 J	31.2 J	116	15.8 U	174
Manganese	6.4	1.2 J	1.8 J	3.6 J	1.6	2.4 J	2.7
Mercury	0.051	0.047 U	0.033 U	0.041 U	0.017 U	0.063 U	0.019 U
Nickel	1.9	0.25 J	0.47 J	0.49 J	0.38 J	0.11 U	0.51 J
Potassium	148 J	33.4 J	115 J	19.7 J	133	13.9 U	91.2 J
Selenium	0.5 J	0.23 UJ	0.26 UJ	0.23 UJ	0.34 J	0.28 U	0.55 J
Silver	0.1 J	0.084 U	0.096 U	0.084 U	0.081 U	0.1 U	0.098 U
Sodium	37.3 U	60 U	70 U	68.4 U	87 U	63.5 U	115 U
Thallium	0.37 UJ	0.35 UJ	0.39 UJ	0.35 UJ	0.33 UJ	0.42 UJ	0.41 UJ
Vanadium	15.8	3.1	3.9	3.2	4.7	0.68 Ј	6.5
Zinc	5.5	1,8 U	1.9 U	3.3	0.41 J	1.1 J	5.6

APPENDIX L BLANK ANALYTICAL RESULTS BACKGROUND STUDY MCB, CAMP LEJEUNE, NORTH CAROLINA CTO-0371

SAMPLE ID SAMPLE DATE	BASE-BG41-01D 7/15/00	BASE-BG44-03D 7/16/00	BASE-BG45-01D 7/17/00	BASE-BG49-02D 7/12/00
Aluminum	2920	3920	4500	9080
Antimony	0.22 U	0.22 UJ	0.26 UJ	0.23 UJ
Arsenic	0.31 U	0.3 U	7.7	2.7
Barium	2.7	6.1	5.1	9.5
Beryllium	0.042 Ј	0.025 J	0.042 J	0.17 J
Cadmium	0.024 U	0.023 U	0.023 U	0.024 U
Calcium	76.5 J	45.1 J	31.8 J	185
Chromium	4.1	4.7	8.6	13.3
Cobalt	0.095 U	0.24 J	0.18 J	0.28 J
Copper	0.52 U	0.62	0.88	2.4
Iron	686	792	4720	7700
Lead	2.8 Ј	2.4	4	5.3 J
Magnesium	20.9 J	108 J	154	273
Manganese	1.7 Ј	2.5	2.5	4.8
Mercury	0.046 U	0.046 J	0.066 J	0.019 U
Nickel	0.52 J	0.56 J	0.48 J	0.79
Potassium	15.4 Ј	85.6 J	122 J	404 J
Selenium	0.26 UJ	0.25 U	0.25 U	0.56 J
Silver	0.095 U	0.091 U	0.13 J	0.14 J
Sodium	45.7 U	100 U	101 U	33.8 U
Thallium	0.39 UJ	0.38 UJ	0.38 UJ	0.4 UJ
Vanadium	1.8 J	4.3	6.9	14.7
Zine	1 U	3.1	3.7	4.7